Figure 5 - uploaded by Piotr Lechowicz
Content may be subject to copyright.
BBP as a function of various fragmentation metrics for the FragA-TG algorithm.

BBP as a function of various fragmentation metrics for the FragA-TG algorithm.

Source publication
Article
Full-text available
Traffic in current networks is constantly increasing due to the growing popularity of various network services. The currently deployed backbone optical networks apply wavelength division multiplexing (WDM) techniques in single-core single-mode fibers (SMFs) to transmit the light. However, the capacity of SMFs is limited due to physical constraints,...

Contexts in source publication

Context 1
... each test scenario, the best allocation type from the previous experiment was used. Figure 5 presents the BBP for various fragmentation metrics applied in the FragA-TG algorithm as a function of the average traffic volume. In most of the cases, the RMSF metric provided the lowest results. ...
Context 2
... each test scenario, the best allocation type from the previous experiment was used. Figure 5 presents the BBP for various fragmentation metrics applied in the FragA-TG algorithm as a function of the average traffic volume. In most of the cases, the RMSF metric provided the lowest results. ...

Citations

Article
Space division multiplexing elastic optical network (SDM-EON) enables high-capacity transmission, in which the network nodes should provide high switching flexibility while limiting the complexity and costs of nodes. Architecture on demand (AoD) nodes can meet these requirements but the slow configuration time of optical backplane in AoD nodes makes it difficult to serve latency-sensitive requests. In this paper, we propose a hybrid optical backplane based on micro-electromechanical systems (MEMS) and semiconductor optical amplifier (SOA) switches to provide fast configuration time for AoD nodes. Moreover, we propose quantitative measures of node switching flexibility in SDM-EONs and of link configuration speed in AoD nodes. Based on the hybrid backplane architecture and the measurement approaches, we propose a flexibility and fragmentation aware routing, spectrum and core allocation algorithm and an AoD synthesis algorithm. Simulation results show that the hybrid AoD nodes with support of spatial lane change can reduce network blocking probability. The AoD based on this hybrid backplane structure can improve the network performance by 32.8% compared to the AoD based on the traditional MEMS. Compared with traditional reconfigurable optical add/drop multiplexers (ROADMs), the hybrid AoD nodes can control the number of wavelength selective switch (WSS) ports.