Figure - uploaded by Leo Peichl
Content may be subject to copyright.
Abb. 1: Julius Bernstein, Portrait von ca. 1890; zu dieser Zeit war Bernstein Rektor der Universität Halle (Abdruck mit Erlaubnis des Universitätsarchivs Halle, Repro 40, BI 18). Der Autograph stammt aus einem Brief Bernsteins von 1910 (UA Halle, P. A. 4431).
Similar publications
Was ist eine Grenzerfahrung? Oft wird unter Grenzerfahrung ein Ereignis von höchster physischer oder mentaler Belastung verstanden - ein Stressereignis oder die Erfahrung einer lebensgefährlichen Situation. Doch nach meiner Auffassung können all das zwar Begleiterscheinungen einer Grenzerfahrung sein, doch sie treffen noch nicht den Kern. In der fo...
Non-odontogene Zahnschmerzen – wenn der Zahnschmerz nicht von den Zähnen kommt Einführung Mitunter klagen Patienten über Schmerzen im Zahn-, Kiefer-und Gesichtsbereich, für die sich aus zahnärztlicher Sicht keine Erklärung findet. In ihrer Not suchen sie oft den nächsten Therapeuten auf, der häufig auch keine eindeu-tige Diagnose stellen kann. In m...
„Das Lernen will gelernt sein!“, so titeln unzählige Bücher in denen Schülerinnen
und Schülern Strategien näher gebracht werden sollen, mit deren Hilfe sie
am besten lernen. Und trotzdem müssen die in diesen Büchern vorgeschlagenen
Vorgehensweisen ausprobiert und von den einzelnen Lernenden auf ihre
Nützlichkeit hin getestet werden. Einem Test auf...
Nach einer zu Beginn der 90-er Jahre starken Zunahme von biologisch wirtschaftenden Betrieben ist derzeit eine rückläufige Tendenz festzustellen, mit einer weiteren Austrittswelle wird nach dem Ablaufen des ÖPUL 95 mit Ende des Jahres 2000 gerechnet. Primär werden dabei ökonomische Gründe – höherer Produktions- und Arbeitsaufwand bei gleichen oder...
Citations
... At that stage, it was known that brain and muscle cells operate with electrical signals, but a long way was still to go in our understanding of how neurons and muscle cells generate transient potential changes. From the work of pioneers such as Nernst, Oswald, and Bernstein [28,29], it was known that cells are negatively charged in their interior and that the generation of the negative transmembrane potential [20]. (C) Theoretical reconstruction of the expected form of the ECG (with the lettering still used today) from the distorted capillary electrometer readings. ...
This chapter recollects the historical evolution of the techniques that set the stage for the development of scanning ion conductance microscopy (SICM). We elaborate how techniques evolved that finally resulted in instruments that now allow researchers to obtain contact-free, three-dimensional images of the surface of living cells with a resolution in the range of a hundredth of a micrometer. The starting point for this as well as for other bioelectric techniques was the discovery of bioelectricity a little more than 200 years ago. After the introduction of the first galvanometers to detect bioelectrical signals in the nineteenth century, in the early decades of the twentieth century, extracellular techniques were developed to record electrocardiographic and electroencephalographic potential changes using chlorinated silver electrodes. These were miniaturized to allow for the detection of signals from individual cells in the middle of the twentieth century by the development of glass microelectrodes with sub-micrometer tip openings as well as appropriate current and voltage clamp amplifiers. The development of operational amplifiers based on transistors finally led to the detection of the tiny currents flowing through single transmembrane proteins. In the 1980s of the last century, scanning techniques were developed taking advantage of computer-guided piezo actuators to control the fine positioning of microelectrode tips on a scale smaller than the resolution of light microscopy. By combining amplifiers originally developed for electrophysiological recordings with nanoscale scanning techniques, it is now possible to quantitatively analyze the topography of the membranes of living cells with a resolution of down to 10 nm. Combinations with other microanalytical techniques, such as fluorescence microscopy, set the stage for future analysis of protein dynamics in moving membranes at unprecedented accuracy.
... He was thus able to rescue du Bois-Reymond's belief in " the preexistence of electrical differences in muscles and nerves " , albeit in terms of potential rather than current. Additional studies of the temperature dependence of muscle and nerve currents convinced him of his teacher's objections to Hermann's metabolic hypotheses; however, parts of Hermann's explanation of negative variation figured into Bernstein's final account of nerve signals5152535455. As with many scientific controversies, resolution appeared in the form of a novel synthesis. ...
... He was thus able to rescue du Bois-Reymond's belief in "the preexistence of electrical differences in muscles and nerves", albeit in terms of potential rather than current. Additional studies of the temperature dependence of muscle and nerve currents convinced him of his teacher's objections to Hermann's metabolic hypotheses; however, parts of Hermann's explanation of negative variation figured into Bernstein's final account of nerve signals [51][52][53][54][55]. As with many scientific controversies, resolution appeared in the form of a novel synthesis. ...
This essay recounts a controversy between a pioneer electrophysiologist, Emil du Bois-Reymond (1818-1896), and his student, Ludimar Hermann (1838-1914). Du Bois-Reymond proposed a molecular explanation for the slight electrical currents that he detected in frog muscles and nerves. Hermann argued that du Bois-Reymond's 'resting currents' were an artifact of injury to living tissue. He contested du Bois-Reymond's molecular model, explaining his teacher's observations as electricity produced by chemical decomposition. History has painted Hermann as the wrong party in this dispute. I seek to set the record straight.
La discusión sobre modelación científica se ha centrado en la relación representacional entre el modelo, como producto terminado, y un supuesto sistema diana en el mundo. Esta aproximación tiene algunos problemas para dar cuenta de procesos de modelación en los que aún está por definirse el objeto de la modelación. En este trabajo muestro que un análisis histórico de la modelación complementa el análisis representacionalista, ya que permite rescatar el proceso de integración de analogías que juega un papel en la generación de criterios de relevancia que permiten configurar el objeto de investigación. A su vez, esto apoya la tesis de que el análisis filosófico de algunas normas en la modelación requiere una reconstrucción histórica de cómo llegaron a instaurarse.
This article aims at illustrating the historical circumstances that led Julius Bernstein in 190213.
Bernstein , J and
Tschermak , A . 1902. Ueber die Beziehung der negativen Schwankung des Muskelstromes zur Arbeitsleistung des Muskels. Pflügers Arch, 89: 289–331. View all references to formulate a membrane theory on resting current in muscle and nerve fibers. It was a truly paradigm shift in research into bioelectrical phenomena, if qualified by the observation that, besides Bernstein, many other electrophysiologists between 1890 and 1902 borrowed ideas from the recent ionistic approach in the physical-chemistry domain. But Bernstein's subjective perception of that paradigm shift was that it constituted a mere reinterpretation of the so-called preexistence theory advanced by his teacher Emil du Bois-Reymond in the first half of the nineteenth century.