Sarah K Toner

Harvard University, Cambridge, Massachusetts, United States

Are you Sarah K Toner?

Claim your profile

Publications (5)51.45 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the cardinal features of schizotypal personality disorder (SPD) is language abnormalities. The focus of this study was to determine whether or not there are also processing abnormalities of pure tones differing in pitch and duration in SPD. Thirteen neuroleptic-naïve male subjects met full criteria for SPD and were group-matched on age and parental socio-economic status to 13 comparison subjects. Verbal learning was measured with the California Verbal Learning Test. Heschl's gyrus volumes were measured using structural MRI. Whole-brain fMRI activation patterns in an auditory task of listening to tones including pitch and duration deviants were compared between SPD and control subjects. In a second and separate ROI analysis we found that peak activation in superior temporal gyrus (STG), Brodmann Areas 41 and 42, was correlated with verbal learning and clinical measures derived from the SCID-II interview. In the region of the STG, SPD subjects demonstrated more activation to pitch deviants bilaterally (p<0.001); and to duration deviants in the left hemisphere (p=0.005) (two-sample t). SPD subjects also showed more bilateral parietal cortex activation to duration deviants. In no region did comparison subjects activate more than SPD subjects in either experiment. Exploratory correlations for SPD subjects suggest a relationship between peak activation on the right for deviant tones in the pitch experiment with odd speech and impaired verbal learning. There was no difference between groups on Heschl's gyrus volume. These data suggest that SPD subjects have inefficient or hyper-responsive processing of pure tones both in terms of pitch and duration deviance that is not attributable to smaller Heschl's gyrus volumes. Finally, these auditory processing abnormalities may have significance for the odd speech heard in some SPD subjects and downstream language and verbal learning deficits.
    Schizophrenia Research 06/2008; 103(1-3):26-39. · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The middle temporal gyrus and inferior temporal gyrus subserve language and semantic memory processing, visual perception, and multimodal sensory integration. Functional deficits in these cognitive processes have been well documented in patients with schizophrenia. However, there have been few in vivo structural magnetic resonance imaging (MRI) studies of the middle temporal gyrus and inferior temporal gyrus in schizophrenia. Middle temporal gyrus and inferior temporal gyrus gray matter volumes were measured in 23 male patients diagnosed with chronic schizophrenia and 28 healthy male subjects by using high-spatial-resolution MRI. For comparison, superior temporal gyrus and fusiform gyrus gray matter volumes were also measured. Correlations between these four regions and clinical symptoms were also investigated. Relative to healthy subjects, the patients with chronic schizophrenia showed gray matter volume reductions in the left middle temporal gyrus (13% difference) and bilateral inferior temporal gyrus (10% difference in both hemispheres). In addition, the patients showed gray matter volume reductions in the left superior temporal gyrus (13% difference) and bilateral fusiform gyrus (10% difference in both hemispheres). More severe hallucinations were significantly correlated with smaller left hemisphere volumes in the superior temporal gyrus and middle temporal gyrus. These results suggest that patients with schizophrenia evince reduced gray matter volume in the left middle temporal gyrus and bilateral reductions in the inferior temporal gyrus. In conjunction with findings of left superior temporal gyrus reduction and bilateral fusiform gyrus reductions, these data suggest that schizophrenia may be characterized by left hemisphere-selective dorsal pathophysiology and bilateral ventral pathophysiology in temporal lobe gray matter.
    American Journal of Psychiatry 10/2004; 161(9):1603-11. · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether psychoses associated with schizophrenia and affective disorder represent manifestations of different disorders or the same disorder is an important but unresolved question in psychiatry. Results of previous volumetric magnetic resonance imaging investigations indicate that gray matter volume reductions in neocortical regions may be specific to schizophrenia. To simultaneously evaluate multiple olfactocentric paralimbic regions, which play crucial roles in human emotion and motivation, in first-episode patients with schizophrenia and affective psychosis. A cross-sectional study using high-spatial resolution magnetic resonance imaging in patients with schizophrenia and affective psychosis at their first hospitalization. Inpatient units at a private psychiatric hospital. Fifty-three first-episode patients, 27 with schizophrenia and 26 with affective (mainly manic) psychosis, and 29 control subjects. Using high-spatial resolution magnetic resonance imaging, the gray matter volumes of 2 olfactocentric paralimbic regions of interest, the insular cortex and the temporal pole, were evaluated. A bilateral volume reduction in insular cortex gray matter was specific to first-episode patients with schizophrenia. In contrast, both first-episode psychosis groups showed a volume reduction in left temporal pole gray matter and an absence of normal left-greater-than-right asymmetry. Region of interest correlations showed that only patients with schizophrenia lacked a positive correlation between left temporal pole and left anterior amygdala-hippocampal complex gray matter volumes, whereas both psychosis groups were similar in lacking normal positive correlations between left temporal pole and left anterior superior temporal gyrus gray matter volumes. These partially different and partially similar patterns of structural abnormalities in olfactocentric paralimbic regions and their associated abnormalities in other temporolimbic regions may be important factors in the differential and common manifestations of the 2 psychoses.
    Archives of General Psychiatry 12/2003; 60(11):1069-77. · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fusiform gyrus is important for face and object recognition, is abnormal in schizophrenia, but has not been studied in schizotypal personality disorder (SPD). Thin-slice MR images showed no differences, either in right, left or total fusiform gyri volumes, between subjects with SPD (N=21) and normal controls (N=19). However, there was a correlation between severity of illusions and magical thinking suffered by the SPD subjects and smaller right fusiform gyrus volumes. This suggests that future studies may be useful in determining the functional competence of this gyrus in SPD.
    Schizophrenia Research 12/2003; 64(1):35-9. · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fusiform gyrus (FG), or occipitotemporal gyrus, is thought to subserve the processing and encoding of faces. Of note, several studies have reported that patients with schizophrenia show deficits in facial processing. It is thus hypothesized that the FG might be one brain region underlying abnormal facial recognition in schizophrenia. The objectives of this study were to determine whether there are abnormalities in gray matter volumes for the anterior and the posterior FG in patients with chronic schizophrenia and to investigate relationships between FG subregions and immediate and delayed memory for faces. Patients were recruited from the Boston VA Healthcare System, Brockton Division, and control subjects were recruited through newspaper advertisement. Study participants included 21 male patients diagnosed as having chronic schizophrenia and 28 male controls. Participants underwent high-spatial-resolution magnetic resonance imaging, and facial recognition memory was evaluated. Main outcome measures included anterior and posterior FG gray matter volumes based on high-spatial-resolution magnetic resonance imaging, a detailed and reliable manual delineation using 3-dimensional information, and correlation coefficients between FG subregions and raw scores on immediate and delayed facial memory derived from the Wechsler Memory Scale III. Patients with chronic schizophrenia had overall smaller FG gray matter volumes (10%) than normal controls. Additionally, patients with schizophrenia performed more poorly than normal controls in both immediate and delayed facial memory tests. Moreover, the degree of poor performance on delayed memory for faces was significantly correlated with the degree of bilateral anterior FG reduction in patients with schizophrenia. These results suggest that neuroanatomic FG abnormalities underlie at least some of the deficits associated with facial recognition in schizophrenia.
    Archives of General Psychiatry 05/2003; 60(4):349-55. · 13.77 Impact Factor

Publication Stats

259 Citations
51.45 Total Impact Points

Institutions

  • 2008
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2004
    • McLean Hospital
      Cambridge, Massachusetts, United States
  • 2003–2004
    • Harvard Medical School
      • Department of Psychiatry
      Boston, MA, United States