Diana Dell'Arciprete

University of Milan, Milano, Lombardy, Italy

Are you Diana Dell'Arciprete?

Claim your profile

Publications (3)17.68 Total impact

  • R Di Leonardo, D Dell'Arciprete, L Angelani, V Iebba
    [show abstract] [hide abstract]
    ABSTRACT: The hydrodynamic interactions of a swimming bacterium with a neighboring surface can cause it to swim in circles. For example, when E. coli is above a solid surface it had been observed to swim in a clockwise direction. By contrast we observe that, when swimming near a liquid-air interface, the sense of rotation is reversed. We quantitatively account for this through the hydrodynamic interaction of the bacterium with its own mirror image swimming on the opposite side of a perfect-slip boundary. The strength of the coupling is reduced for longer cells, where the torque is spread over a larger length, resulting in longer bacteria swimming in larger circles. We confirm this through precise video measurements of bacterial trajectories and orientations.
    Physical Review Letters 01/2011; 106(3):038101. · 7.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Self-propelling bacteria are a nanotechnology dream. These unicellular organisms are not just capable of living and reproducing, but they can swim very efficiently, sense the environment, and look for food, all packaged in a body measuring a few microns. Before such perfect machines can be artificially assembled, researchers are beginning to explore new ways to harness bacteria as propelling units for microdevices. Proposed strategies require the careful task of aligning and binding bacterial cells on synthetic surfaces in order to have them work cooperatively. Here we show that asymmetric environments can produce a spontaneous and unidirectional rotation of nanofabricated objects immersed in an active bacterial bath. The propulsion mechanism is provided by the self-assembly of motile Escherichia coli cells along the rotor boundaries. Our results highlight the technological implications of active matter's ability to overcome the restrictions imposed by the second law of thermodynamics on equilibrium passive fluids.
    Proceedings of the National Academy of Sciences 05/2010; 107(21):9541-5. · 9.74 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Ground water flow and solute transport are controlled by the geological structure and the corresponding heterogeneity and anisotropy of the hydraulic conductivity (K) field. In alluvial aquifers, a complete interdisciplinary characterization of the reservoir is important for reliable predictions. The reconstruction of the subsurface heterogeneity cannot be limited to honor point (e.g., well stratigraphic logs) data, but should also account for the presence of connected high K hydrofacies, which might form preferential flow paths. To explore these concepts an aquifer analogue, at the scale of the point-bar/channel depositional element of a meandering river, was studied. The analogue, exposed in a gravel pit, belongs to the historical sediments of the terraced meandering valley of the Lambro River (Po plain, Northern Italy). The study has been conducted in five steps. (1) Architectural and sedimentological modelling was based on 31 stratigraphic logs collected along five quarry faces (four in E-W direction and one in N-S direction) and a geophysical survey, whereas the hydrostratigraphical characterization was obtained by permeability analysis of 28 samples. Facies mapping was performed in the field and supported by the analysis of the photo-composition of the quarry faces to obtain the geometry, the hierarchy and the internal architecture of sedimentary bodies. Permeability measurements on undisturbed samples and estimates based on the grain-size distribution were compared with bibliography values and used to merge the facies into four hydrofacies: least permeable (very fine sand and silt-clay respectively from topmost channel-fill, silt/clay plugs, drapes and balls), low permeable (sand from point-bar and channel fill bedforms), medium permeable (sandy gravel e gravelly sand from point bars) and most permeable (lower part of lateral accreted units). (2) For a test volume of 11.4m × 11.4m × 2.85m 50 equiprobable simulations of the hydrofacies distribution have been obtained with SISIM (Sequential indicator simulation) and MPS (Multiple point simulation) on a grid of voxels of 20cm × 20cm × 5cm. Conditioning data have been extracted from the hydrofacies maps of two crossing quarry faces. (3) The connectivity of the four simulated hydrofacies has been quantified with total and intrinsic indicators: the former measures the degree of connection within the entire volume, whereas the latter measures the degree of connection of a facies within itself and is therefore less dependent on the proportion of the facies in the total volume. (4) Finite-difference modeling of groundwater flow has been applied to compute the equivalent hydraulic-conductivity tensor. (5) Numerical experiments of convective transport of non-reactive solutes have been performed, in order to map the preferential flow paths and to compute the dispersion tensor with a Lagrangian approach and the longitudinal dispersion with an Eulerian approach. The results show that a multidisciplinary approach permits to reproduce the heterogeneity of this aquifer analogue, so that the results (strength and weaknesses of different geostatistical simulation methods, relationship of connectivity indicators with flow and transport parameters, etc.) obtained for this case study can be generalized to aquifers characterized by similar geological situations.
    04/2010; 12:4046.