L G Presta

Palo Alto Institute for Research and Education, Palo Alto, California, United States

Are you L G Presta?

Claim your profile

Publications (73)497.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical response to the anti-CD20 antibody rituximab has been demonstrated to correlate with the polymorphism in the FcγRIIIa receptor where patients homozygous for the higher affinity V158 allotype showed a better response rate. This finding suggests that engineering of anti-CD20 for increased FcγRIIIa affinity could result in improved clinical outcome. To identify variants with increased affinity to FcγRIIIa, we developed quantitative assays using soluble receptors as well as engineered cell lines expressing FcγRI or FcγRIIIa on the cell surface. We assayed a set of anti-CD20 IgG(1) variants that had identical Fab regions, but alterations in the Fc regions, in both the soluble receptor-based and cell-based FcγRIIIa binding assays. We obtained similar relative binding affinity increases and assay precisions. The increase in affinity for FcγRIIIa correlated with the increase in activity in the antibody-dependent cellular cytotoxicity assay. These variants had unaltered FcγRI binding. In addition to Fcγ receptors, IgG also binds to FcRn, the receptor responsible for the long circulating half-life of IgG. The mutations in the anti-CD20 variants were previously found not to affect FcRn binding in the soluble receptor-based assays; consequently, we used anti-Her2 variants with different binding affinities to FcRn to study FcRn binding assays. We generated a cell line expressing FcRn on the cell surface to measure IgG binding and obtained similar ranking of these anti-Her2 variants in the cell-based and the soluble receptor-based FcRn binding assays. In conclusion, both the soluble receptor-based and cell-based binding assays can be used to identify IgG(1) variants with increased affinity to FcγRIIIa and unaltered affinity to FcγRI and FcRn.
    Journal of immunological methods 02/2011; 365(1-2):132-41. · 2.35 Impact Factor
  • Leonard G Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first murine monoclonal antibody was approved for human therapeutic use over a decade ago, the realization that monoclonal antibody therapeutics could be engineered to improve their efficacy has inspired an astonishing array of novel antibody constructs. Early focus was on reducing the immunogenicity of rodent antibodies via humanization and generation of antibodies in transgenic mice; as those techniques were being established and then provided marketed therapeutic antibodies, the focus expanded to include engineering for enhanced effector functions, control of half-life, tumor and tissue accessibility, augmented biophysical characteristics such as stability, and more efficient (and less costly) production. Over the past two years significant progress in designing antibodies with improved pharmacokinetic properties, via modified interaction with the neonatal Fc receptor (FcRn), has been achieved. Likewise, the ability to alter the communication of a therapeutic antibody with the immune system has been advanced, using both manipulation of the immunoglobulin protein sequence and its glycosylation. Although clinical evaluation of these engineered modifications has yet to be reported, results in primates are encouraging.
    Current Opinion in Immunology 08/2008; 20(4):460-70. · 8.77 Impact Factor
  • Leonard Presta
    Nature Biotechnology 02/2007; 25(1):63-5. · 32.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MHC class I-like Fc receptor FcRn plays an essential role in extending the half-life (t(1/2)) of IgG antibodies and IgG-Fc-based therapeutics in the circulation. The goal of this study was to analyze the effect of human IgG1 (hIgG1) antibodies with enhanced in vitro binding to FcRn on their in vivo t(1/2) in mice expressing human FcRn (hFcRn). Mutants of the humanized monoclonal Herceptin antibody (Hu4D5-IgG1), directed against human epidermal growth factor receptor 2 (p185 (HER2)), show altered pH-dependent binding to hFcRn in vitro. Two engineered IgG1 mutants (N434A and T307A/E380A/N434A) showed a considerably extended t(1/2) in vivo compared with wild-type antibody in mice expressing an hFcRn transgene (Tg) but not in mice expressing the endogenous mouse FcRn. The efficiency of hFcRn-mediated protection was dependent on hFcRn Tg copy number. Moreover, when injected into FcRn-humanized mice at a concentration sufficient to partially saturate hFcRn, the engineered IgG1 mutants with an extended serum t(1/2) were most effective in reducing the t(1/2) of a tracer hIgG1 antibody. Finally, administration of mutant with high binding to hFcRn ameliorated arthritis induced by passive transfer with human pathogenic plasma. These results indicate that Fc regions modified for high binding affinity to hFcRn increases serum persistence of therapeutic antibodies, that the same approach can be exploited as an anti-autoimmune therapy to promote the clearance of endogenous pathogenic IgG and that FcRn-humanized mice are a promising surrogate for hIgG therapeutic development.
    International Immunology 01/2007; 18(12):1759-69. · 3.14 Impact Factor
  • Leonard G Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the first difficulties in developing monoclonal antibody therapeutics was the recognition that human anti-mouse antibody (HAMA) response limited the administration of murine antibodies. Creative science has lead to a number of ways to counter the immunogenicity of non-human antibodies, primarily through chimeric, humanized, de-immunized, and most recently, human-sequence therapeutic antibodies. Once therapeutic antibodies of low or no immunogenicity were available, the creativity then turned to engineering both the antigen-binding domains (e.g., affinity maturation, stability) and altering the effector functions (e.g. antibody-dependent cellular cytotoxicity, complement-dependent cellular cytotoxicity, and clearance rate).
    Advanced Drug Delivery Reviews 09/2006; 58(5-6):640-56. · 12.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dimerization is essential for activity of human epidermal growth factor receptors (HER1/EGFR, HER2/ErbB2, HER3/ErbB3, and ErbB4) and mediates intracellular signaling events leading to cancer cell proliferation, survival, and resistance to therapy. HER2 is the preferred dimerization partner. Activation of HER signaling pathways may be blocked by inhibition of dimer formation using a monoclonal antibody (MAb) directed against the dimerization domain of HER2. The murine MAb 2C4 that specifically binds the HER2 dimerization domain was cloned as a chimeric antibody, humanized using a computer-generated model to guide framework substitutions, and variants were tested as Fabs. Pharmacokinetics and toxicology were evaluated in rodents and cynomolgus monkeys. Cloning the variable domains of MAb 2C4 into a vector containing human kappa and CH1 domains allowed construction of a mouse-human chimeric Fab. DNA sequencing of the chimeric clone permitted identification of CDR residues. The full-length IgG1 of variant F-10 was equivalent in binding to chimeric IgG1 and was designated pertuzumab (rhuMAb 2C4; Omnitarg). Pertuzumab pharmacokinetics was best described by a two-compartment model with a distribution phase of <1 day, terminal half-life of approximately 10 days, and volume of distribution of approximately 40 mL/kg that approximates serum volume. With the exception of diarrhea, pertuzumab was generally well tolerated in cynomolgus monkeys. Pertuzumab, a recombinant humanized IgG1 MAb, is the first of a new class of agents known as HER dimerization inhibitors. Inhibition of HER dimerization may be an effective anticancer strategy in tumors with either normal or elevated expression of HER2.
    Cancer Immunology and Immunotherapy 07/2006; 55(6):717-27. · 3.64 Impact Factor
  • Leonard G Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: mAbs account for an increasing portion of marketed human biological therapeutics. As a consequence, the importance of optimal selection, design, and engineering of these not only has expanded in the past 2 decades but also is now coming into play as a competitive factor. This review delineates the 4 basic areas for optimal therapeutic antibody selection and provides examples of the increasing number of considerations necessary for, and options available for, antibody design. Though some of the advances in antibody technology (eg, antibodies derived from phage-display libraries) have already made it to market, other more recent advances, such as engineering antibodies for enhanced effector functions, may not be far behind, especially given the increasing competition for therapeutic antibodies to the same target (eg, anti-CD20 and anti-TNF-alpha).
    Journal of Allergy and Clinical Immunology 11/2005; 116(4):731-6; quiz 737. · 12.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rituxan, a chimeric anti-CD20 antibody, has been used for treating non-Hodgkin's lymphoma and some autoimmune diseases. However, a humanized anti-CD20 antibody is desirable for long-term treatment of autoimmune diseases. CD20 is an integral membrane protein with a small intervening extracellular loop. Lacking a native soluble CD20 protein, we developed a simple cell-based enzyme-linked immunosorbent assay (ELISA) using live WIL2 cells in a 96-well format to measure relative binding affinity to support the humanization process. Although WIL2 cells grow in suspension and require centrifugation during the wash steps, the assay was quantitative and reproducible. We also demonstrated that cloned adherent transfected Chinese hamster ovary (CHO) cells could be used to improve assay throughput. For clinical studies requiring quantification of the humanized antibody in serum, we used an alternate approach and developed a high throughput ELISA using an anti-idiotypic antibody as a surrogate antigen for capture and an anti-idiotypic antibody for detection to overcome serum effects. These assay strategies may be applied for characterization of other antibodies directed to multitransmembrane proteins.
    Journal of Immunological Methods 12/2004; 294(1-2):189-97. · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 6A6 is a murine monoclonal antibody raised against the humanized anti-tissue factor antibody D3H44. 6A6 is able to completely neutralize the anticoagulant activity of D3H44 in tissue factor-dependent functional assays, such as endotoxin-induced whole blood clotting, prothrombin time, as well as factor X and factor IX activation. ELISA-type assays further showed that 6A6 binds to an epitope with critical determinants on the V(L) domain of D3H44. The possibility that the anti-idiotypic 6A6 might carry an "internal image" of the original antigen (tissue factor) was examined using the X-ray structure of the 6A6-Fab/D3H44-Fab complex determined at 2.5A resolution. We find that 6A6 structurally mimics tissue factor only so far as it combines with the antigen recognition surface of D3H44. While 6A6 contacts both V(L) and V(H) domains of D3H44, as does tissue factor, there is more contact with the D3H44 V(L) domain and less with the D3H44 V(H) domain relative to the tissue factor contacts on D3H44. Additionally, there is an almost total lack of correspondence between 6A6 and tissue factor at the level of amino acid side-chain functional groups. Despite the fact that both tissue factor and 6A6 are composed largely of beta-sheets, they present fundamentally different elements of secondary structure to D3H44; tissue factor presents beta-sheets edge-on, while 6A6 uses mostly loops. Finally, the finding that 6A6 competes with tissue factor for D3H44 binding raises the possibility of using 6A6 as an antidote for D3H44 anticoagulant therapy. To this end, we constructed a chimeric murine/human 6A6-Fab, which effectively neutralized D3H44 and fully restored tissue factor function in enzymatic assays.
    Journal of Molecular Biology 09/2003; 331(2):433-46. · 3.91 Impact Factor
  • Source
    Leonard Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: With the acceptance of antibodies as therapeutics, a diversity of engineered antibody forms have been created to improve their efficacy, including enhancing the effector functions of full-length antibodies, delivering toxins to kill cells or cytokines in order to stimulate the immune system, and bispecific antibodies to target multiple receptors. After years of in vitro investigation, many of these are now moving into clinical trials and are showing promise. A potential new type of effector function for antibodies, that is, the generation of reactive oxygen species that may effect inflammation or bacterial killing, has been elucidated. In addition, the field has expanded beyond a concentration on immunoglobulin G to include immunoglobulin A antibodies as potential therapeutics.
    Current Opinion in Structural Biology 09/2003; 13(4):519-25. · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some Abs are more efficacious after being cross-linked to form dimers or multimers, presumably as a result of binding to and clustering more surface target to either amplify or diversify cellular signaling. To improve the therapeutic potency of these types of Abs, we designed and generated Abs that express tandem Fab repeats with the aim of mimicking cross-linked Abs. The versatile design of the system enables the creation of a series of multivalent human IgG Ab forms including tetravalent IgG1, tetravalent F(ab')2, and linear Fab multimers with either three or four consecutively linked Fabs. The multimerized Abs target the cell surface receptors HER2, death receptor 5, and CD20, and are more efficacious than their parent mAbs in triggering antitumor cellular responses, indicating they could be useful both as reagents for study as well as novel therapeutics.
    The Journal of Immunology 06/2003; 170(9):4854-61. · 5.52 Impact Factor
  • Source
    Leonard G Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: B-cell lines that hypermutate their immunoglobulin genes can be exploited to generate antigen-specific antibodies.
    Nature Biotechnology 12/2002; 20(11):1096-7. · 32.44 Impact Factor
  • Leonard G Presta
    [Show abstract] [Hide abstract]
    ABSTRACT: With eleven therapeutic antibodies approved worldwide and many more in clinical trials, research on antibody engineering has continued to escalate and expand. This review covers recent progress in generation of antibodies by ex vivo methods, systems for screening these, and the quest for higher affinity, more stable, optimally biodistributed antibody fragments, especially for solid tumors. The latest developments in engineering antibodies for removal or enhancement of effector functions (antibody-dependent cellular cytotoxicity (ADCC), phagosytosis, complement fixation (CDC) and half-life) through protein alteration or carbohydrate optimization may now enable generation of superior antibody therapeutics. Antibody conjugates, including immunotoxins and immunocytokines, as well as multivalent and multispecific antibodies confer expanded utility of therapeutic antibodies. Finally, research into the IgA/FcalphaRI system has now provided an additional route to therapeutic antibodies.
    Current Pharmaceutical Biotechnology 10/2002; 3(3):237-56. · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The binding sites on human IgG1 for human Fc gamma receptor (Fc gamma R) I, Fc gamma RIIa, Fc gamma RIIb, Fc gamma RIIIa and neonatal FcR have been mapped. A common set of IgG1 residues is involved in binding to all Fc gamma Rs, while Fc gamma RII and Fc gamma RIII utilize distinct sites outside this common set. In addition to residues which abrogated binding to the Fc gamma R, several positions were found which improved binding only to specific Fc gamma Rs or simultaneously improved binding to one type of Fc gamma R and reduced binding to another type. Selected IgG1 variants with improved binding to Fc gamma RIIIa were then tested in an in vitro antibody-dependent cellular cytotoxicity (ADCC) assay and showed an enhancement in ADCC when either peripheral blood mononuclear cells or natural killer cells were used.
    Biochemical Society Transactions 09/2002; 30(4):487-90. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lec13 cells, a variant Chinese hamster ovary cell line, were used to produce human IgG1 that were deficient in fucose attached to the Asn(297)-linked carbohydrate but were otherwise similar to that found in IgG1 produced in normal Chinese hamster ovary cell lines and from human serum. Lack of fucose on the IgG1 had no effect on binding to human FcgammaRI, C1q, or the neonatal Fc receptor. Although no change in affinity was found for the His(131) polymorphic form of human FcgammaRIIA, a slight improvement in binding was evident for FcgammaRIIB and the Arg(131) FcgammaRIIA polymorphic form. In contrast, binding of the fucose-deficient IgG1 to human FcgammaRIIIA was improved up to 50-fold. Antibody-dependent cellular cytotoxicity assays using purified peripheral blood monocytes or natural killer cells from several donors showed enhanced cytotoxicity, especially evident at lower antibody concentrations. When combined with an IgG1 Fc protein variant that exhibited enhanced antibody-dependent cellular cytotoxicity, the lack of fucose was synergistic.
    Journal of Biological Chemistry 08/2002; 277(30):26733-40. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shotgun scanning combinatorial mutagenesis was used to study the antigen-binding site of Fab2C4, a humanized monoclonal antibody fragment that binds to the extracellular domain of the human oncogene product ErbB2. Essentially all the residues in the Fab2C4 complementarity determining regions (CDRs) were alanine-scanned using phage-displayed libraries that preferentially allowed side-chains to vary as the wild-type or alanine. A separate homolog-scan was performed using libraries that allowed side-chains to vary only as the wild-type or a similar amino acid residue. Following binding selections to isolate functional clones, DNA sequencing was used to determine the wild-type/mutant ratios at each varied position, and these ratios were used to assess the contributions of each side-chain to antigen binding. The alanine-scan revealed that most of the side-chains that contribute to antigen binding are located in the heavy chain, and the Fab2C4 three-dimensional structure revealed that these residues fall into two groups. The first group consists of solvent-exposed residues which likely make energetically favorable contacts with the antigen and thus comprise the functional-binding epitope. The second group consists of buried residues with side-chains that pack against other CDR residues and apparently act as scaffolding to maintain the functional epitope in a binding-competent conformation. The homolog-scan involved subtle mutations, and as a result, only a subset of the side-chains that were intolerant to alanine substitutions were also intolerant to homologous substitutions. In particular, the 610 A2 functional epitope surface revealed by alanine-scanning shrunk to only 369 A2 when mapped with homologous substitutions, suggesting that this smaller subset of side-chains may be involved in more precise contacts with the antigen. The results validate shotgun scanning as a rapid and accurate method for determining the functional contributions of individual side-chains involved in protein-protein interactions.
    Journal of Molecular Biology 08/2002; 320(2):415-28. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein-protein interaction between leukocyte functional antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) is critical to lymphocyte and immune system function. Here, we report on the transfer of the contiguous, nonlinear epitope of ICAM-1, responsible for its association with LFA-1, to a small-molecule framework. These LFA-1 antagonists bound LFA-1, blocked binding of ICAM-1, and inhibited a mixed lymphocyte reaction (MLR) with potency significantly greater than that of cyclosporine A. Furthermore, in comparison to an antibody to LFA-1, they exhibited significant anti-inflammatory effects in vivo. These results demonstrate the utility of small-molecule mimics of nonlinear protein epitopes and the protein epitopes themselves as leads in the identification of novel pharmaceutical agents.
    Science 03/2002; 295(5557):1086-9. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A neutralizing anti-interleukin-(IL-)8 monoclonal antibody was humanized by grafting the complementary determining regions onto the human IgG framework. Subsequent alanine scanning mutagenesis and phage display enabled the production of an affinity matured antibody with a >100-fold improvement in IL-8 binding. Antibody fragments can be efficiently produced in Escherichia coli but have the limitation of rapid clearance rates in vivo. The Fab' fragment of the antibody was therefore modified with polyethylene glycol (PEG) in order to obtain a more desirable pharmacokinetic profile. PEG (5-40 kDa) was site-specifically conjugated to the Fab' via the single free cysteine residue in the hinge region. In vitro binding and bioassays showed little or no loss of activity. The pharmacokinetic profiles of the 20 kDa, 30 kDa, 40 kDa, and 40 kDa branched PEG-Fab' molecules were evaluated in rabbits. Relative to the native Fab', the clearance rates of the PEGylated molecules were decreased by 44-175-fold. In a rabbit ear model of ischemia/reperfusion injury, all PEGylated Fab' molecules were as efficacious in reducing oedema as the original monoclonal antibody. These studies demonstrate that it is possible to customize the pharmacokinetic properties of a Fab' while retaining its antigen binding activity.
    Cytokine 12/2001; 16(3):106-19. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a panel of murine monoclonal antibodies that recognize human interferon alpha. One of these mononclonal antibodies binds and neutralizes, with high affinity, all of seven tested recombinant human interferon alphas. This mononclonal antibody also neutralizes the interferon activity present in two independent pools of interferon alphas prepared following stimulation of human peripheral blood leukocytes. The complementary determining regions from this murine mononclonal antibody were transferred to a human IgG2 heavy chain and to a human kappa1 light chain. In addition, six (heavy chain) and two (light chain) amino acids were transferred from the framework regions. This generated a humanized mononclonal antibody that retained the specificity of the mouse parent. The humanized anti-interferon alpha antibody is a candidate therapeutic for those diseases, such as insulin-dependent diabetes, systemic lupus erythematosis, psoriasis and Crohn's disease, which are all characterized by pathological expression of interferon alpha.
    Cytokine 10/2001; 15(5):250-60. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.
    Journal of Biological Chemistry 04/2001; 276(9):6591-604. · 4.65 Impact Factor

Publication Stats

6k Citations
497.76 Total Impact Points

Institutions

  • 2002
    • Palo Alto Institute for Research and Education
      Palo Alto, California, United States
  • 2001–2002
    • Genentech
      • Department of Immunology
      San Francisco, California, United States
  • 1994–1997
    • University of Wisconsin, Madison
      • Department of Surgical Sciences
      Madison, MS, United States