Su Hwa Jang

Hanyang University, Ansan, Gyeonggi, South Korea

Are you Su Hwa Jang?

Claim your profile

Publications (2)6.56 Total impact

  • Su Hwa Jang, Hee Yong Chung
    [Show abstract] [Hide abstract]
    ABSTRACT: The hematopoietic cell malignancy is one of the most prevalent type of cancer and the disease has multiple pathologic molecular signatures. Research on the origin of hematopoietic cancer stem cells and the mode of subsequent maintenance and differentiation needs robust animal models that can reproduce the transformation and differentiation event in vivo. Here, we show that co-transduction of MYC and PIM2 proto-oncogenes into mouse bone marrow cells readily establishes permanent cell lines that can induce lethal myeloid sarcoma in vivo. Unlike the previous doubly transgenic mouse model in which coexpression of MYC and PIM2 transgenes exclusively induced B cell lymphoma, we were able to show that the same combination of genes can also transform primary bone marrow myeloid cells in vitro resulting in permanent cell lines which induce myeloid sarcoma upon in vivo transplantation. By inducing cancerous transformation of fresh bone marrow cells in a controlled environment, the model we established will be useful for detailed study of the molecular events involved in initial transformation process of primary myeloid bone marrow cells and provides a model that can give insight to the molecular pathologic characteristics of human myeloid sarcoma, a rare presentation of solid tumors of undifferentiated myeloid blast cells associated with various types of myeloid leukemia.
    Molecules and Cells 07/2012; 34(2):201-8. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional suppression of spindle checkpoint protein activity results in apoptotic cell death arising from mitotic failure, including defective spindle formation, chromosome missegregation, and premature mitotic exit. The recently identified p31(comet) protein acts as a spindle checkpoint silencer via communication with the transient Mad2 complex. In the present study, we found that p31(comet) overexpression led to two distinct phenotypic changes, cellular apoptosis and senescence. Because of a paucity of direct molecular link of spindle checkpoint to cellular senescence, however, the present report focuses on the relationship between abnormal spindle checkpoint formation and p31(comet)-induced senescence by using susceptible tumor cell lines. p31(comet)-induced senescence was accompanied by mitotic catastrophe with massive nuclear and chromosomal abnormalities. The progression of the senescence was completely inhibited by the depletion of p21(Waf1/Cip1) and partly inhibited by the depletion of the tumor suppressor protein p53. Notably, p21(Waf1/Cip1) depletion caused a dramatic phenotypic conversion of p31(comet)-induced senescence into cell death through mitotic catastrophe, indicating that p21(Waf1/Cip1) is a major mediator of p31(comet)-induced cellular senescence. In contrast to wild-type p31(comet), overexpression of a p31 mutant lacking the Mad2 binding region did not cause senescence. Moreover, depletion of Mad2 by small interfering RNA induced senescence. Here, we show that p31(comet) induces tumor cell senescence by mediating p21(Waf1/Cip1) accumulation and Mad2 disruption and that these effects are dependent on a direct interaction of p31(comet) with Mad2. Our results could be used to control tumor growth.
    Molecular Cancer Research 04/2009; 7(3):371-82. · 4.35 Impact Factor