Colleen M. McIntyre

Columbus State University, Columbus, Georgia, United States

Are you Colleen M. McIntyre?

Claim your profile

Publications (3)6.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to determine if the oral consumption of red beetroot food color would result in an inhibition of N-nitrosomethylbenzylamine (NMBA)-induced tumors in the rat esophagus. Rats were treated with NMBA and given either regular water ad libitum or water containing 78 microg/mL commercial red beetroot dye, E162. The number of NMBA-induced esophageal papillomas was reduced by 45% (P < .001) in animals that received the food color compared to controls. The treatment also resulted in reduced rates of cell proliferation in both precancerous esophageal lesions and in papillomas of NMBA-treated rats, as measured by immunohistochemical staining of Ki-67 in esophageal tissue specimens. The effects of beetroot food color on angiogenesis (microvessel density by CD34 immunostaining), inflammation (by CD45 immunostaining), and apoptosis (by terminal deoxynucleotidyl transferase dUTP nick end-labeling staining) in esophageal tissue specimens were also determined. Compared to rats treated with NMBA only, the levels of angiogenesis and inflammation in the beetroot color-consuming animals were reduced, and the apoptotic rate was increased. Thus, the mechanism(s) of chemoprevention by the active constituents of red beetroot color include reducing cell proliferation, angiogenesis, and inflammation and stimulating apoptosis. Importantly, consumption of the dye in the drinking water for a period of 35 weeks did not appear to induce any overt toxicity. Based on the fact that red beetroot color contains betanins, which have strong antioxidant activity, it is postulated that these effects are mediated through inhibition of oxygen radical-induced signal transduction. However, the sum of constituents of E162 has not been determined, and other components with other mechanisms may also be involved in antagonizing cancer development.
    Journal of medicinal food 06/2010; 13(3):733-9. · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diets containing freeze-dried black raspberries (BRB) suppress the development of N-nitrosomethylbenzylamine (NMBA)-induced tumors in the rat esophagus. Using bioassay-directed fractionation, the anthocyanins in BRB were found to be the most active constituents for down-regulation of carcinogen-induced nuclear factor-kappaB and activator protein-1 expression in mouse epidermal cells in vitro. The present study was undertaken, therefore, to determine if the anthocyanins contribute to the chemopreventive activity of BRB in vivo. F344 rats consumed diets containing either (a) 5% whole BRB powder, (b) an anthocyanin-rich fraction, (c) an organic solvent-soluble extract (a-c each contained approximately 3.8 micromol anthocyanins/g diet), (d) an organic-insoluble (residue) fraction (containing 0.02 mumol anthocyanins/g diet), (e) a hexane extract, and (f) a sugar fraction (e and f had only trace quantities of anthocyanins), all derived from BRB. Animals were fed diets 2 weeks before treatment with NMBA and throughout the bioassay. Control rats were treated with NMBA only. Animals were killed at week 30, and esophageal tumors were enumerated. The anthocyanin treatments (diet groups a-c) were about equally effective in reducing NMBA tumorigenesis in the esophagus, indicating that the anthocyanins in BRB have chemopreventive potential. The organic-insoluble (residue) fraction (d) was also effective, suggesting that components other than berry anthocyanins may be chemopreventive. The hexane and sugar diets were inactive. Diet groups a, b, and d all inhibited cell proliferation, inflammation, and angiogenesis and induced apoptosis in both preneoplastic and papillomatous esophageal tissues, suggesting similar mechanisms of action by the different berry components.
    Cancer Prevention Research 02/2009; 2(1):84-93. · 4.89 Impact Factor
  • Source
    Colleen M. McIntyre