Fujio Araki

Kumamoto University, Kumamoto, Kumamoto Prefecture, Japan

Are you Fujio Araki?

Claim your profile

Publications (47)58.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Our purpose in this study was to implement three-dimensional (3D) gamma analysis for structures of interest such as the planning target volume (PTV) or clinical target volume (CTV), and organs at risk (OARs) for intensity-modulated radiation therapy (IMRT) dose verification. IMRT dose distributions for prostate and head and neck (HN) cancer patients were calculated with an analytical anisotropic algorithm in an Eclipse (Varian Medical Systems) treatment planning system (TPS) and by Monte Carlo (MC) simulation. The MC dose distributions were calculated with EGSnrc/BEAMnrc and DOSXYZnrc user codes under conditions identical to those for the TPS. The prescribed doses were 76 Gy/38 fractions with five-field IMRT for the prostate and 33 Gy/17 fractions with seven-field IMRT for the HN. TPS dose distributions were verified by the gamma passing rates for the whole calculated volume, PTV or CTV, and OARs by use of 3D gamma analysis with reference to MC dose distributions. The acceptance criteria for the 3D gamma analysis were 3/3 and 2 %/2 mm for a dose difference and a distance to agreement. The gamma passing rates in PTV and OARs for the prostate IMRT plan were close to 100 %. For the HN IMRT plan, the passing rates of 2 %/2 mm in CTV and OARs were substantially lower because inhomogeneous tissues such as bone and air in the HN are included in the calculation area. 3D gamma analysis for individual structures is useful for IMRT dose verification.
    Radiological Physics and Technology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we aimed to evaluate quantitatively the patient organ dose from computed tomography (CT) using Monte Carlo calculations. A multidetector CT unit (Aquilion 16, TOSHIBA Medical Systems) was modeled with the GMctdospp (IMPS, Germany) software based on the EGSnrc Monte Carlo code. The X-ray spectrum and the configuration of the bowtie filter for the Monte Carlo modeling were determined from the chamber measurements for the half-value layer (HVL) of aluminum and the dose profile (off-center ratio, OCR) in air. The calculated HVL and OCR were compared with measured values for body irradiation with 120 kVp. The Monte Carlo-calculated patient dose distribution was converted to the absorbed dose measured by a Farmer chamber with a (60)Co calibration factor at the center of a CT water phantom. The patient dose was evaluated from dose-volume histograms for the internal organs in the pelvis. The calculated Al HVL was in agreement within 0.3 % with the measured value of 5.2 mm. The calculated dose profile in air matched the measured value within 5 % in a range of 15 cm from the central axis. The mean doses for soft tissues were 23.5, 23.8, and 27.9 mGy for the prostate, rectum, and bladder, respectively, under exposure conditions of 120 kVp, 200 mA, a beam pitch of 0.938, and beam collimation of 32 mm. For bones of the femur and pelvis, the mean doses were 56.1 and 63.6 mGy, respectively. The doses for bone increased by up to 2-3 times that of soft tissue, corresponding to the ratio of their mass-energy absorption coefficients.
    Radiological Physics and Technology 11/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR (192)Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for (192)Ir dosimetry was determined from ion chamber measurements in a water phantom. The (192)Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm(3)) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a (60)Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, kQ, for (60)Co to (192)Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the (192)Ir source center, considering the depth dependency of kQ for (60)Co to (192)Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the (192)Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol. Due to the simple but accurate assembly, the sandwich measurement method is useful for daily dose management of (192)Ir sources.
    Medical Physics 09/2013; 40(9):092101. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Image-guided radiotherapy (IGRT) is an increasingly commonly adopted technique. As a result, however, total patient dose is increasing rapidly, especially when kV-cone beam computed tomography (CBCT) is applied. This study investigated the dosimetry of kV-CBCT using a Farmer ionization chamber with a (60)Co absorbed-dose calibration factor. The absorbed-dose measurements were performed using an I'mRT phantom (RW3, IBA) which is employed for dose verification of intensity-modulated radiotherapy (IMRT). The I'mRT phantom was used as a substitute for head and pelvis phantoms. The kV-CBCT absorbed dose was evaluated from a beam quality conversion factor of kV to (60)Co and the ionization ratio of the I'mRT phantom and water, calculated using the Monte Carlo method. The dose distribution in the I'mRT phantom was also measured using a radiophotoluminescent glass dosimeter (RGD). The absorbed doses for the pelvis phantom (full scan) ranged from 2.5-4 cGy for kV-CBCT and 4-8 cGy for MV-CBCT. TomoTherapy resulted in a lower dose of approximately 1.3 cGy due to fan-beam. For the head phantom (half scan), the doses ranged from 0.1-0.7 cGy for kV-CBCT and 3-5 cGy for MVCBCT. The results for RGD were similar to ion chamber measurements. It is necessary to decrease the absorbed dose of the organs at risk every time IGRT is applied.
    Nippon Hoshasen Gijutsu Gakkai zasshi 07/2013; 69(7):753-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we present a physical characterization of the agility(™) (Elekta). agility(™) is composed of 160 interdigitating multileaf collimators (MLCs) with a width of 5 mm at the isocenter. The physical characterizations that include leaf position accuracy, leakage, field penumbra and the tongue-and-groove (T&G) effect were evaluated using well-commissioned 4, 6 and 10-MV photon beams. The leaf position accuracy was within 0.5 mm for all gantry angles and each MLC. The leakage was 0.44% on average and reached 0.47% at 10 MV: remarkably low due to a new design with tilted leaves. However, the T&G effect occurred due to tilt. It was approximately 20.8% on average and reached 22.3% at 6 MV. The penumbra width increased up to 8.5 mm at a field size of 20×20 cm at 4 MV. High position designed MLCs create a wider penumbra but show lower leakage and large head clearance. Head clearance is an important factor in stereotactic radiotherapy with multiple non-coplanar beams.
    Nippon Hoshasen Gijutsu Gakkai zasshi 07/2013; 69(7):778-83.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D95, Dmean, V20, V5, homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D95 and Dmean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2013; 69(4):400-6.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2013; 69(6):663-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our purpose in this study was to evaluate the accuracy of a new multi-planar dose measurement method. The multi-planar dose distributions were reconstructed at each depth by convolution of EPID fluence and dose kernels with the use of EPIDose software (SunNuclear). The EPIDose was compared with EPID, MapCHECK (SunNuclear), EDR2 (Kodak), and Monte Carlo-calculated dose profiles. The EPIDose profiles were almost in agreement with Monte Carlo-calculated dose profiles and MapCHECK for test plans. The dose profiles were in good agreement with EDR2 at the penumbra region. For dose distributions, EPIDose, EDR2, and MapCHECK agreed with that of the treatment-planning system at each depth in the gamma analysis. In comparisons of clinical IMRT plans, EPIDose had almost the same accuracy as MapCHECK and EDR2. Because EPIDose has a wide dynamic range and high resolution, it is a useful tool for the complicated IMRT verification. Furthermore, EPIDose can also evaluate the absolute dose.
    Radiological Physics and Technology 12/2012;
  • Fujio Araki
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the perturbation correction factors and inhomogeneity correction factors (ICFs) for a thin-walled cylindrical ion chamber in a heterogeneous phantom including solid water, lung and bone plastic materials. The perturbation factors due to the replacement of the air cavity, non-water equivalence of the wall and the stem, non-air equivalence of the central electrode and the overall perturbation factor, P(Q), for a cylindrical chamber, in the heterogeneous phantom were calculated with the EGSnrc/Cavity Monte Carlo code for 6 and 15 MV photon beams. The PTW31010 (0.125 cm(3)) chamber was modeled with Monte Carlo simulations, and was used for measurements and calculations of percentage depth ionization (PDI) or percentage depth dose (PDD). ICFs were calculated from the ratio of the product of the stopping power ratios (SPRs) and P(Q) of lung or bone to solid water. Finally, the measured PDIs were converted to PDDs by using ICFs and were compared with those calculated by the Monte Carlo method. The perturbation effect for the ion chamber in lung material is insignificant at 5 × 5 and 10 × 10 cm(2) fields, but the effect needs to be considered under conditions of lateral electron disequilibrium with a 3 × 3 cm(2) field. ICFs in lung varied up to 2% and 4% depending on the field size for 6 and 15 MV, respectively. For bone material, the perturbation effects due to the chamber wall and the stem were more significant at up to 3.5% and 1.6% for 6 MV, respectively. ICFs for bone material were approximately 0.945 and 0.940 for 6 and 15 MV, respectively. The converted PDDs by using ICFs were in good agreement with Monte Carlo calculated PDDs. The chamber perturbation correction and SPRs should strictly be considered for ion chamber dosimetry in heterogeneous media. This is more important for small field dosimetry in lung and bone materials.
    Physics in Medicine and Biology 10/2012; 57(22):7615-7627. · 2.70 Impact Factor
  • Source
    Fujio Araki
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to calculate the replacement correction factor, P(repl) (the product P(gr)P(fl) in the AAPM's notation, or the product p(cav)p(dis) in the IAEA's notation), at a reference depth, d(ref), for cylindrical chamber cavities in clinical photon and electron beams by Monte Carlo simulation. P(repl) was calculated for cavities with a combination of various diameters and lengths. P(repl) values calculated in photon and electron beams were typically higher than those recommended by the TG-51 and TRS-398 dosimetry protocols. P(repl) values for a Farmer chamber cavity were higher by 0.3 to 0.2% and by 0.7 to 0.4%, respectively, than data of TG-51 and TRS-398, at photon energies of (60)Co to 18 MV. Similarly, the P(repl) values for electron beams were higher by 1.5 to 1.1% than data for both protocols, in a range of 6-18 MeV. The P(repl) values depended upon the cavity diameter and length, especially for lower electron energies. We found that P(repl) values of cylindrical chamber cavities for photon and electron beams were significantly different from those recommended by TG-51 and TRS-398.
    Radiological Physics and Technology 04/2012; 5(2):199-206.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dosimetric properties between various 2D array detectors were compared and were evaluated with regard to the accuracy in absolute dose and dose distributions for clinical treatment fields. We used to check the dose accuracy: 2D array detectors; MapCHECK (Sun Nuclear), EPID (Varian Medical Systems), EPID-based dosimetry (EPIDose, Sun Nuclear), COMPASS (IBA) and conventional system; EDR2 film (Eastman Kodak), Exradin A-14SL ion chamber (0.016 cc, Standard Imaging). First, we compared the dose linearity, dose rate dependence, and output factor between the 2D array detectors. Next, the accuracy of the absolute dose and dose distributions were evaluated for clinical fields. All detector responses for the dose linear were in agreement within 1%, and the dose rate dependence and output factor agreed within a standard deviation of ±1.2%, except for EPID. This is because EPID is fluence distributions. In all the 2D array detectors, the point dose agreed within 5% with treatment planning system (TPS). Pass rates of each detector for TPS were more than 97% in the gamma analysis (3 mm/3%). EPIDose was in a good agreement with TPS. All 2D array detectors used in this study showed almost the same accuracy for clinical fields. EPIDose has better resolution than other 2D array detectors and thus this is expected for dose distributions with a small field.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2012; 68(4):443-52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We measured the angular dependence of central and off-axis detectors in a 2D ionization chamber array, MatriXX, and applied correction factors (CFs) to improve the accuracy of composite dose verification of IMRT and VMAT. The MatriXX doses were measured with a 10° step for gantry angles (θ) of 0°-180°, and a 1° step for lateral angles of 90°-110° in a phantom, with a 30 × 10 cm2 field for 6 MV and 10 MV photons. The MatriXX doses were also calculated under the same conditions by the Monte Carlo (MC) algorithm. The CFs for the angular dependence of MatriXX were obtained as a function of θ from the ratios of MatriXX-measured doses to MC-calculated doses, and normalized at θ = 0°. The corrected MatriXX were validated with different fields, various simple plans, and clinical treatment plans. The dose distributions were compared with those of MC calculations and film. The absolute doses were also compared with ionization chamber and MC-calculated doses. The angular dependence of MatriXX showed over-responses of up to 6% and 4% at θ = 90° and under-responses of up to 15% and 11% at 92°, and 8% and 5% at 180° for 6 MV and 10 MV photons, respectively. At 92°, the CFs for the off-axis detectors were larger by up to 7% and 6% than those for the central detectors for 6 MV and 10 MV photons, respectively, and were within 2.5% at other gantry angles. For simple plans, MatriXX doses with angular correction were within 2% of those measured with the ionization chamber at the central axis and off-axis. For clinical treatment plans, MatriXX with angular correction agreed well with dose distributions calculated by the treatment planning system (TPS) for gamma evaluation at 3% and 3 mm. The angular dependence corrections of MatriXX were useful in improving the measurement accuracy of composite dose verification of IMRT and VMAT.
    Journal of Applied Clinical Medical Physics 01/2012; 13(5):3856. · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our purpose in this study was to evaluate the fundamental accuracy of reconstructed dose distributions from the COMPASS system using specific MLC test patterns and complicated IMRT neck plans. The COMPASS-reconstructed dose distributions were compared with those measured with EPID, MapCHECK, and EDR2 film and as well as Monte Carlo-calculated dose profiles with use of square-wave chart patterns of 20-, 10-, and 5-mm gaps and step and pyramid patterns. Additionally, the COMPASS dose distributions for clinical IMRT neck plans were tested. The COMPASS dose profiles were almost in agreement with the Monte Carlo-calculated dose profiles and point doses measured with MapCHECK for 20- and 10-mm gap patterns. The dose profile for a 5-mm gap pattern showed a narrow width due to the detector size in the penumbra region. For step and pyramid patterns, COMPASS agreed with MapCHECK and Monte Carlo calculation, except for EDR2 film. The COMPASS and MapCHECK dose distributions agreed with that of a treatment planning system by gamma analysis (criteria; 3 mm/3%). In comparisons of clinical IMRT neck dose distributions, COMPASS was measured with almost the same accuracy as MapCHECK, but slight deviations were found for large IMRT fields. These deviations could be minimized by improvement of the beam model of the COMPASS system. The COMPASS system can be expected to be used for traditional QA methods in clinical routine with the same accuracy as a MapCHECK diode detector.
    Radiological Physics and Technology 01/2012; 5(1):63-70.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we developed a correction method for coordinate transformation errors that are produced in combination with the ExacTrac X-ray system (BrainLAB) and HexaPOD (Elekta) in image guided radiation therapy (IGRT). The positional accuracy of the correction method was compared between the ExacTrac Robotics (BrainLAB) and no correction. We tried to correct iBeam evo couch top (Elekta) by operating two steps drive like ExacTrac Robotics. No correction for HexaPOD showed a maximal error of 4.52 mm, and the couch did not move to the correct position. However, our correction method for HexaPOD showed the positional accuracy within 1 mm. Our method has no significant difference with ExacTrac Robotics (paired t-test, P>0.1). But, when the correction values for the rotatory directions were large, the positional accuracy tended to be poor. The smallest setup errors for the rotatory directions are important for IGRT.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2012; 68(11):1492-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2012; 68(11):1519-24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. The cavity correction factor, P(cav), for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R50, in the energy range of 6-18 MeV electrons with the EGSnrc C(++) -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P(Q), and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. The P(cav) values at depths between the surface and R50 for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P(Q) values for the PTW30013 chamber mainly depended on P(cav), and for parallel-plate chambers depended on the wall correction factor, P(waII), rather than P(cav). P(Q) at depths from the surface to R50 for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Calculated PDI curves for PTW30013, NACP-02, and Roos chambers agreed well with that of water by using the optimal EPOM. Therefore, the possibility of using cylindrical ionization chambers can be expected for PDD measurements in clinical electron beams.
    Medical Physics 08/2011; 38(8):4647-54. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The X-ray source or focal radiation is one of the factors that can degrade the conformal field edge in stereotactic body radiotherapy. For that reason, it is very important to estimate the total focal radiation profiles of linear accelerators, which consists of X-ray focal-spot radiation and extra-focal radiation profiles. Our purpose in this study was to propose an experimental method for estimating the focal-spot and extra-focal radiation profiles of linear accelerators based on triple Gaussian functions. We measured the total X-ray focal radiation profiles of the accelerators by moving a slit in conjunction with a photon field p-type silicon diode. The slit width was changed so that the extra-focal radiation could be optimally included in the total focal radiation. The total focal radiation profiles of an accelerator at 4-MV and 10-MV energies were approximated with a combination of triple Gaussian functions, which correspond to the focal-spot radiation, extra-focal radiation, and radiation transmitted through the slit assembly. As a result, the ratios of the Gaussian peak value of the extra-focal radiation to that of the focal spot for 4 and 10 MV were 0.077 and 0.159, respectively. The peak widths of the focal-spot and extra-focal radiation profiles were 0.57 and 25.0 mm for 4 MV, respectively, and 0.60 and 22.0 mm for 10 MV, respectively. We concluded that the proposed focal radiation profile model based on the triple Gaussian functions may be feasible for estimating the X-ray focal-spot and extra-focal radiation profiles.
    Radiological Physics and Technology 03/2011; 4(2):173-9.
  • Medical Physics 01/2011; 38(6):3513-. · 2.91 Impact Factor
  • Medical Physics 01/2011; 38(6):3516-. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated experimentally and clinically the influence of a six degree (6D) carbon fiber couch on conventional radiation therapy. We used 4, 6 and 10 MV X-rays and compared dose distributions based on correction methods, i.e. monitor unit (MU) addition, including computed tomography (CT) couch, and the couch modeling. Additionally, we evaluated the clinical value of dosimetric correction for the 6D couch in 30 patients treated with multi-field irradiation. In the phantom study, the maximum difference of isocenter doses attributable to the 6D couch was 5.1%; the difference was reduced with increasing X-ray energy. Although the isocenter dose based on each correction method was precise within ±1%, MU addition underestimated the surface dose. In the clinical study, the maximum difference of isocenter doses attributable to the 6D couch was 2.7%. The correction methods for the 6D couch provide for highly precise treatment planning. However, the clinical indication of complicated correction methods should be considered for each institution or each patient, because the influence of the 6D couch was reduced with multi-field irradiation.
    Nippon Hoshasen Gijutsu Gakkai zasshi 01/2011; 67(12):1592-7.