Are you Takanori Nomura?

Claim your profile

Publications (2)6.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is widely expressed in the brain, and plays key roles in various cellular processes in response to both extracellular and intracellular stimuli. Here, we explored the role of FAK in cerebellar development. In the mouse cerebellum, FAK was found to be distributed as tiny cytoplasmic aggregates in various neuronal and glial elements, including Purkinje cells (PCs), Bergmann glia (BG), parallel fiber (PF)-terminals and climbing fiber (CF)-terminals. The neuron/glia-specific ablation of FAK impaired cerebellar foliation, such as variable decreases in foliation sizes and the lack of intercrural and precentral fissures. Some of the BG cells became situated ectopically in the molecular layer. Furthermore, the FAK ablation altered the innervation territories of CFs and PFs on PCs. CF innervation regressed to the basal portion of proximal dendrites and somata, whereas ectopic spines protruded from proximal dendrites and PFs expanded their territory by innervating the ectopic spines. Furthermore, the persistence of surplus CFs innervating PC somata caused multiple innervation. When FAK was selectively ablated in PCs, diminished dendritic innervation and persistent somatic innervation by CFs were observed, whereas cerebellar foliation and cell positioning of BG were normally retained. These results suggest that FAK in various neuronal and glial elements is required for the formation of normal histoarchitecture and cytoarchitecture in the cerebellum, and for the construction of proper innervation territory and synaptic wiring in PCs.
    European Journal of Neuroscience 03/2008; 27(4):836-54. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.
    Biochemical and Biophysical Research Communications 06/2002; 293(3):953-7. · 2.28 Impact Factor