I Thalmann

University of Washington Seattle, Seattle, WA, United States

Are you I Thalmann?

Claim your profile

Publications (70)141.16 Total impact

  • Ruediger Thalmann, Isolde Thalmann, Wenfu Lu
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-option of the enzyme secretory phospholipase A2 (sPLA2) and adoption of tertiary conformation are essential factors in the multifunctionality of otoconin 90 (OC90) and homologous modulators. To present results of in vitro studies of recombinant otoconial proteins for the understanding of current concepts of biomolecular mechanisms controlling otoconial mineralization. In vitro characterization of recombinant otoconial proteins with respect to crystal growth parameters and solution state behavior. Evaluation by HR-SEM, micro-Raman, circular dichroism, in combination with molecular modeling of individual domains and whole OC90. Polymorph selection: recombinant otoconin 22 (rOC22) in vitro selects calcite rather than aragonite, expression of which requires association with an insoluble scaffold most likely provided by Otolin. Alternate folding of rOC22 results in formation of vaterite, the polymorph of primitive fish otoconia and of diseased human otoconia (e.g. Potter's syndrome). Molecular models of OC90 exhibit a surface of uniform negative electrostatic potential, enabling localized supersaturation. We propose that OC90 interacts with Otolin in formation of iso-oriented columns of nano-crystallites, which should ultimately result in assembly of the complex mosaic of native otoconia.
    Acta oto-laryngologica 04/2011; 131(4):382-90. · 0.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Otoconia are biomineral particles of microscopic size essential for perception of gravity and maintenance of balance. Millions of older Americans are affected in their mobility, quality of life and in their health by progressive demineralization of otoconia. Currently, no effective means to prevent or counteract this process are available. Because of prohibitive anatomical and biological constraints, otoconial research is lagging far behind other systems such as bone and teeth. We have overcome these obstacles by generating otoconial matrix proteins by recombinant techniques. In the present study, we evaluated the effects of recombinant Otoconin 90 (OC90), the principal soluble matrix protein upon calcite crystal growth patterns in vitro. Our findings highlight multiple effects, including facilitation of nucleation, and inhibition of crystal growth in a concentration-dependent manner. Moreover, OC90 induces morphologic changes characteristic of native otoconia. OC90 is considerably less acidic than the prototypical invertebrate CaCO(3) -associated protein, but is nevertheless an effective modulator of calcite crystal growth. Based on homology modeling of the sPLA2-like domains of OC90, we propose that the lower density of acidic residues of the primary sequence is compensated by formation of major anionic surface clusters upon folding into tertiary conformation.
    Hearing research 09/2010; 268(1-2):172-83. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes some of the possible approaches to quantitative evaluation of the biochemical effects of ototoxic agents upon fluids and tissues of the internal ear. Major emphasis is placed upon the ultramicrochemical techniques of Lowry, which offer adequate sensitivity for the quantitative determination of metabolites and enzymes in minutes fluid samples and in microscopic tissue elements and single cells. As specific examples, the effects of ethacrynic acid and of salicylate upon the levels of high energy phosphates in stria vascularis, spiral organ and other internal ear structures are described. In most instances, chemical analyses were preceded by electrophysiological evaluations. Results are compared with those obtained in ischemia and following local application of toxic agents, such as cyanide and dinitrophenol. In respect to the ototoxic effects of aminoglycoside antibiotics, only pilot experiments have been performed to date. Methodological problems are extremely complex in this area. In order to obtain meaningful data, analyses should be performed at a stage when chemical changes are already present, but structural damage is still minimal.
    Audiology: official organ of the International Society of Audiology 07/2009; 12(5):364-82.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human vestibular dysfunction is an increasing clinical problem. Degeneration or displacement of otoconia is a significant etiology of age-related balance disorders and Benign Positional Vertigo (BPV). In addition, commonly used antibiotics, such as aminoglycoside antibiotics, can lead to disruption of otoconial structure and function. Despite such clinical significance, relatively little information has been compiled about the development and maintenance of otoconia in humans. Recent studies in model organisms and other mammalian organ systems have revealed some of the proteins and processes required for the normal biomineralization of otoconia and otoliths in the inner ear of vertebrates. Orchestration of extracellular biomineralization requires bringing together ionic and proteinaceous components in time and space. Coordination of these events requires the normal formation of the otocyst and sensory maculae, specific secretion and localization of extracellular matrix proteins, as well as tight regulation of the endolymph ionic environment. Disruption of any of these processes can lead to the formation of abnormally shaped, or ectopic, otoconia, or otoconial agenesis. We propose that normal generation of otoconia requires a complex temporal and spatial control of developmental and biochemical events. In this review, we suggest a new hypothetical model for normal otoconial and otolith formation based on matrix vesicle mineralization in bone which we believe to be supported by information from existing mutants, morphants, and biochemical studies.
    Brain Research 06/2006; 1091(1):58-74. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inner ear dysfunction is often associated with defective hair cells. Therefore, hair cells are the focus of study in many of the mouse mutants showing auditory and vestibular deficits. However, harvesting sufficient numbers of hair cells from the tiny bony mouse inner ear for proteomic analysis is challenging. New approaches that would take advantage of mouse mutants and avoid processing steps, such as decalcification or microdissetion, would be more suitable for proteomic analysis. Here, we propose a novel approach called SSUMM-Subtractive Strategy Using Mouse Mutants. SSUMM takes advantage of the differences between control and affected or mutant samples. We predict that SSUMM would be a useful method in proteomics, especially in those cases in which the investigator must work with small numbers of diverse cell types from a tiny organ. Here, we discuss the potential utility of SSUMM to unravel the protein expression profiles of hair cells using the Pou4f3 mouse mutant as an example. Pou4f3 mutant mice exhibit a total loss of inner and outer hair cells, but supporting cells remain relatively intact in the cochlea, thus providing an excellent model for identifying proteins and transcripts that are specific to the hair cell at all life stages. SSUMM would maximize the sensitivity of the analyses while obviating the need for tedious sessions of microdissection and collection of hair cells. By comparing the mutant to control ears at specific time points, it is possible to identify direct targets of a gene product of interest. Further, SSUMM could be used to identify and analyze inner ear development markers and other known genes/proteins that are coexpressed in the ear. In this short technical report, we also discuss protein-profiling approaches suitable for SSUMM and briefly discuss other approaches used in the field of proteomics.
    Brain Research 06/2006; 1091(1):113-21. · 2.88 Impact Factor
  • Isolde Thalmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics, the large-scale analysis of the structure and function of proteins, as well as of protein-protein interactions, has evolved into a major component of 'systems analysis'. This requires the integration of information from different sources and at multiple levels, and involves two distinct parameters, (1) high-throughput protein separation, identification, and characterization, and (2) the extension of the obtained analytical data for the determination of the physiological function. The inner ear poses exceptional challenges to the study of proteomics because of its minute size, poor accessibility, association with complex fluid spaces, and diversity of cell types. Various approaches to the study of proteomics of the inner ear are presented, and success stories, noteworthy failures and what lies ahead, will be discussed.
    Brain Research 06/2006; 1091(1):103-12. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe preparatory techniques adapted for the study of proteins of inner ear tissues and fluids that have allowed us to apply state-of-the-art analytical techniques in spite of the minute size and anatomical complexities of this organ. Illustrative examples address unresolved issues of functional and clinical significance. First, we demonstrate how quick-freezing and freeze drying prevents artifacts that arise from sampling endolymphatic sac (ES) content in the liquid state. This set the stage for the generation of the first protein profile of the ES. Identification of crucial proteins will help elucidate mechanisms of endolymph volume regulation and pathogenesis of Meniere's disease. Second, we show how a unique situation allowed identification of otoconial proteins by mass spectrometric analysis without prior separation and we discuss possible roles for these minor otoconins in otoconial development and prevention of degenerative diseases that affect balance. Finally, we demonstrate techniques for the precise dissection of organ of Corti and its substructures, while preserving their near normal chemical state. We extended an earlier study in which we identified a novel calcium-binding protein by IEF, oncomodulin, localized in the outer hair cells and show here the applicability of prefractionation for the screening of calcium-binding proteins of organ of Corti. These studies demonstrate how advanced preparatory and analytical techniques can be applied to studies of the inner ear.
    Electrophoresis 05/2006; 27(8):1598-608. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first part of this review deals with recent advances in the understanding of biochemical mechanisms of otoconial morphogenesis. Most important in this regard is the molecular characterization of otoconin 90, the principal matrix protein of mammalian calcitic otoconia, which was found to be a homologue of the phospholytic enzyme PLA2. The unique and unexpected expression pattern of this protein required radical rethinking of traditional concepts. The new data, when integrated with existing information, provide a rational basis for an explanation of the mechanisms leading to crystal nucleation and growth. Based on this information, a hypothetical model is presented that posits interaction of otoconin 90 with microvesicles derived from the supporting cells as a key event in the formation of otoconia. The second part of the review is directed at the controversial subject of maintenance of mature otoconia and systematically analyzes the available indirect information on this topic. A synthesis of these theoretical considerations is viewed in relation to the pathogenesis of the important otoneurologic entities of BPPN and senile otoconial degeneration. The last part of the review deals with several animal models that promise to help elucidate normal and abnormal mechanisms of otoconial morphogenesis, including mineral deficiencies, mutations with selective otoconial agenesis, as well as targeted disruption of essential genes.
    Annals of the New York Academy of Sciences 01/2006; 942(1):162 - 178. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Otoconin-90, the principal otoconial matrix protein, provided a tool to investigate the molecular mechanism of otoconial morphogenesis. The endolymphatic sac of the embryonic chick and guinea pig contain otoconia. Here, we show that the embryonic mouse transiently expresses ectopic otoconia in the endolymphatic sac. Massive precipitate of otoconin-90-positive material is detectable in the lumen of the endolymphatic sac between embryonic day 14.5 and 17.5 with frequent accretion into more heavily staining otoconia-like particles. Otoconin-90 was also localized at the surface and the interior of epithelial cells lining the endolymphatic sac as well as incorporated into free floating cells. In contrast, in situ hybridization failed to detect mRNA in the endolymphatic duct and sac, even though the adjacent nonsensory vestibular structures are heavily stained. Because of ample expression of otoconin-90 protein in the absence of the corresponding mRNA, we conclude that the luminal otoconin-90 is imported via longitudinal flow from the vestibular compartments, where both mRNA and protein are strongly expressed. Because of absence of mRNA, the expression of the corresponding protein by the epithelia lining the endolymphatic sac can only be explained by a resorptive process, as previously proposed on the basis of the movement of luminal macromolecules. The data do not support the previous hypothesis that the transient expression of otoconia-like particles of the endolymphatic sac represents a vestigial phenomenon from the amphibian stage, since amphibia express ample mRNA encoding otoconin-22 in the endolymphatic sac system.
    Hearing Research 09/2004; 194(1-2):65-72. · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OCP1 and OCP2 are the most abundant proteins in the organ of Corti. Their distributions map identically to the epithelial gap-junction system, which unites the supporting cell population. Sequence data imply that OCP1 and OCP2 are subunits of an SCF E3 ubiquitin ligase. Consistent with that hypothesis, electrophoretic mobility-shift assays and pull-down assays with immobilized OCP1 demonstrate the formation of an OCP1-OCP2 complex. Sedimentation equilibrium data indicate that the complex is heterodimeric. The coincidence of the OCP1-OCP2 distribution and the epithelial gap-junction system suggests that one or more connexin isoforms may be targets of an SCF(OCP1) complex. Significantly, immobilized OCP1 binds (35)S-labeled connexin 26 (Cx26) produced by in vitro transcription-translation. Moreover, Cx26 can be co-immunoprecipitated from extracts of the organ of Corti by immobilized anti-OCP1, implying that OCP1 and Cx26 may associate in vivo. Given that lesions in the Cx26 gene (GJB2) are the most common cause of hereditary deafness, the OCP1-Cx26 interaction has substantial biomedical relevance.
    Hearing Research 06/2004; 191(1-2):101-9. · 2.54 Impact Factor
  • D Yang, I Thalmann, R Thalmann, D D Simmons
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of two calcium-binding proteins of the parvalbumin (PV) family, the alpha isoform (alphaPV) and the beta isoform known as oncomodulin (OM), was investigated in the rat cochlea during postnatal development and related to cholinergic efferent innervation. Using RT-PCR analysis, we found that OM expression begins between postnatal day 2 (P2) and P4, and peaks as early as P10, while alphaPV mRNA begins expression before birth and remains highly expressed into the adult period. Both in situ hybridization and immunoreactivity confirm that OM is uniquely expressed by the outer hair cells (OHCs) in the rat cochlea and occurs after efferent innervation along the cochlear spiral between P2 and P4. In contrast to OM expression, alphaPV immunoreactivity is expressed in both inner hair cells (IHCs) and OHCs at birth. Following olivocochlear efferent innervation, OHCs demonstrate weak OM immunoreactivity beginning at P5 and diminished alphaPV immunoreactivity after P10. In organ cultures isolated prior to the efferent innervation of OHCs, OM immunoreactivity failed to develop in OHCs, but alphaPV immunoreactivity remained present in both IHCs and OHCs. In contrast, organ cultures isolated after efferent innervation of OHCs show OHCs with low levels of OM immunoreactivity and high levels of alphaPV immunoreactivity. This study suggests that OM and alphaPV are differentially regulated in OHCs during cochlear development. Our findings further raise the possibility that the expression of PV proteins in OHCs may be influenced by efferent innervation.
    Journal of Neurobiology 04/2004; 58(4):479-92. · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Otoconia are biominerals within the utricle and saccule of the inner ear that are critical for the perception of gravity and linear acceleration. The classical mouse mutant tilted (tlt) and a new allele, mergulhador (mlh), are recessive mutations that affect balance by impairing otoconial morphogenesis without causing collateral deafness. The mechanisms governing otoconial biosynthesis are not known. Here we show that tlt and mlh are mutant alleles of a novel gene (Otopetrin 1, Otop1), encoding a multi-transmembrane domain protein that is expressed in the macula of the developing otocyst. Both mutants carry single point mutations leading to non-conservative amino acid substitutions that affect two putative transmembrane (TM) domains (tlt, Ala(151)-->Glu in TM3; mlh, Leu(408)-->Gln in TM8). Otop1 and Otop1-like paralogues, Otop2 and Otop3, define a new gene family with homology to the C. elegans and D. melanoganster DUF270 genes.
    Human Molecular Genetics 04/2003; 12(7):777-89. · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The central role of the supporting cell population, or epithelial support complex (ESC), in cochlear homeostasis has gained general acceptance. That the details of this role may vary markedly with location, however, remains poorly appreciated. For example, the K+ recirculation pathway may well be dictated by position along the cochlear axis: a perilymphatic route near the apex and a transcellular one near the base. The ESC expresses very high levels of OCP1 and OCP2, now known to be components of a novel, organ of Corti (OC)-specific SCF ubiquitin ligase (SCF(OCP1)). In the SCF(OCP1) cnmplex, OCP1 presumably binds selected protein targets, positioning them for ubiquitination. The recent demonstration that recombinant OCP1 interacts non-covalently with Cx26 suggests that the connexins may be target proteins for SCF(OCP1). Although ubiquitination has classically been viewed as a signal for subsequent destruction by the 26S proteasome, the energy-limited state of the OC prompts consideration of alternative fates, e.g. reversible internalization. The ESC also expresses several components of the Wingless/Wnt signaling pathway. Significantly, two of the gap-junction proteins expressed in the OC, Cx43 and Cx30, are known targets of the Wnt pathway. On the basis of these observations, a working hypothesis is proposed wherein the Wnt pathway activates connexin expression, while OCP1 regulates its degradation.
    Acta Oto-Laryngologica 02/2003; 123(2):203-8. · 1.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The two most abundant proteins of the organ of Corti, OCP1 and OCP2, are acidic, cytosolic, low molecular weight proteins diffusely distributed within the cytoplasm of supporting cells. A recent study by Henzl et al. (2001) found first, that these two proteins co-localize with connexin 26 along the epithelial gap junction system and second, that OCP2 could participate with OCP1 in an organ of Corti-specific SCF complex (Skp1, cul1in, and Fbp), a ubiquitin ligase complex. Previous study has also implicated OCP2 in the recycling and regulation of intracellular K(+) efflux as well as pH homeostatic mechanisms. In the present study, we document the emergence and distribution features of OCP2 through various stages (weeks 11-28) of gestation in human fetal cochleae. Four fetal cochleae, the cochleae of a normal hearing human adult and a mature rat for positive control were fixed in 4% formalin within 2 h post mortem. Immunohistochemical studies were performed using a rabbit polyclonal antibody raised against a synthetic peptide corresponding to amino acids 3-16. Specimens were mounted in paraffin sections. Results show that OCP2 immunoreactivity is evident at a prenatal age of 11 weeks, peaks in expression at the onset of cochlear function at 20 weeks and achieves adult-like patterns of distribution just prior to histological maturation at 28 weeks. Though this protein could be associated with the development, maturation, and electrochemical maintenance of the cochlear gap junction system, the nature of this protein's function in the developing and mature human cochlea remains unclear.
    Hearing Research 06/2002; 167(1-2):102-9. · 2.54 Impact Factor
  • R. Thalmann, I. Thalmann
    Laryngo-rhino-otologie - LARYNGO RHINO OTOL. 01/2002; 81(11):771-772.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first part of this review deals with recent advances in the understanding of biochemical mechanisms of otoconial morphogenesis. Most important in this regard is the molecular characterization of otoconin 90, the principal matrix protein of mammalian calcitic otoconia, which was found to be a homologue of the phospholytic enzyme PLA2. The unique and unexpected expression pattern of this protein required radical rethinking of traditional concepts. The new data, when integrated with existing information, provide a rational basis for an explanation of the mechanisms leading to crystal nucleation and growth. Based on this information, a hypothetical model is presented that posits interaction of otoconin 90 with microvesicles derived from the supporting cells as a key event in the formation of otoconia. The second part of the review is directed at the controversial subject of maintenance of mature otoconia and systematically analyzes the available indirect information on this topic. A synthesis of these theoretical considerations is viewed in relation to the pathogenesis of the important otoneurologic entities of BPPN and senile otoconial degeneration. The last part of the review deals with several animal models that promise to help elucidate normal and abnormal mechanisms of otoconial morphogenesis, including mineral deficiencies, mutations with selective otoconial agenesis, as well as targeted disruption of essential genes.
    Annals of the New York Academy of Sciences 11/2001; 942:162-78. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunohistochemical data indicate that OCP1 co-localizes exactly with OCP2 in the epithelial gap junction region of the guinea pig organ of Corti (OC). Despite the abundance of OCP1 in the OC, gaining access to its coding sequence – and, in particular, the 5′ end of the coding sequence – proved unexpectedly challenging. The putative full-length OCP1 cDNA – 1180 nucleotides in length – includes a 67 nucleotide 5′ leader sequence, 300 codons (including initiation and termination signals), and a 216 nucleotide 3′ untranslated region. The cDNA encodes a protein having a predicted molecular weight of 33 700. The inferred amino acid sequence harbors an F-box motif spanning residues 52–91, consistent with a role for OCP1 and OCP2 in the proteasome-mediated degradation of select OC proteins. Although OCP1 displays extensive homology to an F-box protein recently cloned from rat brain (NFB42), clustered sequence non-identities indicate that the two proteins are transcribed from distinct genes. The presumptive human OCP1 gene was identified in the human genome databank. Located on chromosome 1p35, the inferred translation product exhibits 94% identity with the guinea pig OCP1 coding sequence.
    Hearing Research 08/2001; · 2.54 Impact Factor
  • Source
    I Thalmann
    [Show abstract] [Hide abstract]
    ABSTRACT: The inner ear, one of the most complex organs, contains within its bony shell three sensory systems, the evolutionary oldest gravity receptor system, the three semicircular canals for the detection of angular acceleration, and the auditory system--unrivaled in sensitivity and frequency discrimination. All three systems are susceptible to a host of afflictions affecting the quality of life for all of us. In the first part of this review we present an introduction to the milestones of inner ear research to pave the way for understanding the complexities of a proteomics approach to the ear. Minute sensory structures, surrounded by large fluid spaces and a hard bony shell, pose extreme challenges to the ear researcher. In spite of these obstacles, a powerful preparatory technique was developed, whereby precisely defined microscopic tissue elements can be isolated and analyzed, while maintaining the biochemical state representative of the in vivo conditions. The second part consists of a discussion of proteomics as a tool in the elucidation of basic and pathologic mechanisms, diagnosis of disease, as well as treatment. Examples are the organ of Corti proteins OCP1 and OCP2, oncomodulin, a highly specific calcium-binding protein, and several disease entities, Meniere's disease, benign paroxysmal positional vertigo, and perilymphatic fistula.
    Disease markers 02/2001; 17(4):259-70. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A unique feature of the vertebrate gravity receptor organs, the saccule and utricle, is the mass of biomineral structures, the otoconia, overlying a gelatinous matrix also called "otoconial membrane" on the surface of the sensory epithelium. In mammals, otoconia are deposits of calcium carbonate in the form of composite calcite crystals. We used quick-freezing, deep etching to examine the otoconial mass of the guinea pig utricle. The deep-etching step exposed large expanses of intact and fractured otoconia, showing the fine structure and relationship between their internal crystal structure, their surface components, and the filament matrix in which they are embedded. Each otoconium has a compact central core meshwork of filaments and a composite outer shell of ordered crystallites and macromolecular aggregates. A distinct network of 20-nm beaded filaments covers the surface of the otoconia. The otoconia are interconnected and secured to the gelatinous matrix by surface adhesion and by confinement within a loose interotoconial filament matrix. The gelatinous matrix is a dense network made of yet another type of filament, 22 nm in diameter, which are cross-linked by shorter filaments, characteristically 11 nm in diameter. Our freeze-etching data provide a structural framework for considering the molecular nature of the components of the otoconial complex, their mechanical properties, and the degree of biological versus chemical control of otoconia biosynthesis.
    Journal of Structural Biology 08/2000; 131(1):67-78. · 3.36 Impact Factor
  • Y Wang, I Thalmann, R Thalmann, D M Ornitz
    Genomics 07/1999; 58(2):214-5. · 3.01 Impact Factor

Publication Stats

933 Citations
141.16 Total Impact Points

Institutions

  • 1998–2010
    • University of Washington Seattle
      • Department of Otolaryngology/Head and Neck Surgery
      Seattle, WA, United States
  • 1970–2010
    • Washington University in St. Louis
      • Department of Otolaryngology
      San Luis, Missouri, United States
  • 1997–2004
    • University of Missouri
      • Department of Biochemistry
      Columbia, MO, United States
  • 1992–1995
    • University of Tsukuba
      • Institute of Clinical Medicine
      Tsukuba, Ibaraki, Japan
  • 1993
    • Howard Hughes Medical Institute
      Maryland, United States