P A Lefebvre

University of Minnesota Duluth, Duluth, Minnesota, United States

Are you P A Lefebvre?

Claim your profile

Publications (48)295.08 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The green alga Chlamydomonas reinhardtii evolves H2 gas under anaerobic conditions in reactions catalyzed by hydrogenase enzymes. Expression of the HYDA genes and related genes is regulated by environmental conditions including anoxia. To study the pathways of gene regulation, we utilized the reporter gene RSP3, encoding a radial spoke protein required for flagellar motility. Promoter/5′UTR sequences of HYDA1 and HYDA2 genes were fused to the RSP3 coding sequence and the constructs were transformed into immotile cells lacking a functional RSP3 gene. The resulting transformants express the RSP3 reporter under the transcriptional control of the HYDA1 or HYDA2 promoter/5′UTR sequences. They are paralyzed in the presence of O2, but motile in anoxic conditions. To identify cis-elements or trans-acting factors that regulate gene expression in response to hypoxia, the conditionally swimming transformant strains were mutagenized and constitutively swimming strains were selected under aerobic conditions. Molecular and genetic analyses showed that mutations in both cis-elements and trans-acting factors lead to constitutive motility. Some mutant strains contain transposable elements inserted into the HYDA promoter/5′UTR sequences. These interrupted regions might indicate regulatory sequences involved in the response to hypoxia or perhaps the presence of sequences within transposable elements that stimulate transcription of the reporter gene.
    Algal Research 10/2013; 2(4):341–351. · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 2013.
    Biotechnology Progress 06/2013; · 1.85 Impact Factor
  • Source
    Lai-Wa Tam, Paul T Ranum, Paul A Lefebvre
    [Show abstract] [Hide abstract]
    ABSTRACT: The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes, LF1, LF2, LF3 and LF4, cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location--the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC), LF1, LF2 and LF3, are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.
    Molecular biology of the cell 01/2013; · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.
    Biotechnology and Bioengineering 07/2012; · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.
    Genetics 09/2011; 189(4):1249-60. · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A process for isolation of three products (fatty acids, chars and nutrient-rich aqueous phases) from the hydrothermal carbonization of microalgae is described. Fatty acid products derived from hydrolysis of fatty acid ester groups in the microalgae were obtained in high yield and were found to be principally adsorbed onto the char also created in the process. With the highest lipid-containing microalga investigated, 92% of the fatty acids isolated were obtained by solvent extraction of the char product, with the remaining 8% obtained by extraction of the acidified filtrate. Obtaining the fatty acids principally by a solid–liquid extraction eliminates potential emulsification and phase separation problems commonly encountered in liquid–liquid extractions. The aqueous phase was investigated as a nutrient amendment to algal growth media, and a 20-fold dilution of the concentrate supported algal growth to a level of about half that of the optimal nutrient growth medium. Uses for the extracted char other than as a solid fuel are also discussed. Results of these studies indicate that fatty acids derived from hydrothermal carbonization of microalgae hold great promise for the production of liquid biofuels.
    Applied Energy. 01/2011; 88(10):3286-3290.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this work was to quantify the kinetic behavior of Dunaliella primolecta (D. primolecta) subjected to controlled fluid flow under laboratory conditions. In situ velocities of D. primolecta were quantified by micron-resolution particle image velocimetry and particle tracking velocimetry. Experiments were performed under a range of velocity gradients and corresponding energy dissipation levels at microscopic scales similar to the energy dissipation levels of natural aquatic ecosystems. An average swimming velocity of D. primolecta in a stagnant fluid was 41 microm/s without a preferential flow direction. In a moving fluid, the sample population velocities of D. primolecta follow a log-normal distribution. The variability of sample population velocities was maximal at the highest fluid flow velocity in the channel. Local fluid velocity gradients inhibited the accrual of D. primolecta by twofold 5 days after the initiation of the experiment in comparison to the non-moving fluid control experiment.
    Biotechnology and Bioengineering 09/2010; 107(1):65-75. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrothermal carbonization is a process in which biomass is heated in water under pressure to create a char product. With higher plants, the chemistry of the process derives primarily from lignin, cellulose and hemicellulose components. In contrast, green and blue-green microalgae are not lignocellulosic in composition, and the chemistry is entirely different, involving proteins, lipids and carbohydrates (generally not cellulose). Employing relatively moderate conditions of temperature (ca. 200 °C), time (<1 h) and pressure (<2 MPa), microalgae can be converted in an energy efficient manner into an algal char product that is of bituminous coal quality. Potential uses for the product include creation of synthesis gas and conversion into industrial chemicals and gasoline; application as a soil nutrient amendment; and as a carbon neutral supplement to natural coal for generation of electrical power.
    Biomass and Bioenergy. 01/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.
    Molecular biology of the cell 02/2008; 19(1):262-73. · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2. The complete NIT2 cDNA sequence was obtained, and its deduced amino acid sequence revealed GAF, Gln-rich, Leu zipper, and RWP-RK domains typical of transcription factors and transcriptional coactivators associated with signaling pathways. The predicted Nit2 protein sequence is structurally related to the Nin (for nodule inception) proteins from plants but not to NirA/Nit4/Yna proteins from fungi and yeast. NIT2 expression is negatively regulated by ammonium and is optimal in N-free medium with no need for the presence of nitrate. However, intracellular nitrate is required to allow Nit2 to activate the NIA1 promoter activity. Nit2 protein was expressed in Escherichia coli and shown to bind to specific sequences at the NIA1 gene promoter. Our data indicate that NIT2 is a central regulatory gene required for nitrate signaling on the Chlamydomonas NIA1 gene promoter and that intracellular nitrate is needed for NIT2 function and to modulate NIA1 transcript levels.
    The Plant Cell 11/2007; 19(11):3491-503. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
    Science. 10/2007; 318(5848):245-250.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
    Science 10/2007; 318(5848):245-250. · 31.20 Impact Factor
  • Source
    Lai-Wa Tam, Nedra F Wilson, Paul A Lefebvre
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about how cells regulate the size of their organelles. In this study, we find that proper flagellar length control in Chlamydomonas reinhardtii requires the activity of a new member of the cyclin-dependent kinase (CDK) family, which is encoded by the LF2 (long flagella 2) gene. This novel CDK contains all of the important residues that are essential for kinase activity but lacks the cyclin-binding motif PSTAIRE. Analysis of genetic lesions in a series of lf2 mutant alleles and site-directed mutagenesis of LF2p reveals that improper flagellar length and defective flagellar assembly correlate with the extent of disruption of conserved kinase structures or residues by mutations. LF2p appears to interact with both LF1p and LF3p in the cytoplasm, as indicated by immunofluorescence localization, sucrose density gradients, cell fractionation, and yeast two-hybrid experiments. We propose that LF2p is the catalytic subunit of a regulatory kinase complex that controls flagellar length and flagellar assembly.
    The Journal of Cell Biology 04/2007; 176(6):819-29. · 10.82 Impact Factor
  • Source
    Rachel L Nguyen, Lai-Wa Tam, Paul A Lefebvre
    [Show abstract] [Hide abstract]
    ABSTRACT: Flagellar length is tightly regulated in the biflagellate alga Chlamydomonas reinhardtii. Several genes required for control of flagellar length have been identified, including LF1, a gene required to assemble normal-length flagella. The lf1 mutation causes cells to assemble extra-long flagella and to regenerate flagella very slowly after amputation. Here we describe the positional cloning and molecular characterization of the LF1 gene using a bacterial artificial chromosome (BAC) library. LF1 encodes a protein of 804 amino acids with no obvious sequence homologs in other organisms. The single LF1 mutant allele is caused by a transversion that produces an amber stop at codon 87. Rescue of the lf1 phenotype upon transformation was obtained with clones containing the complete LF1 gene as well as clones that lack the last two exons of the gene, indicating that only the amino-terminal portion of the LF1 gene product (LF1p) is required for function. Although LF1 helps regulate flagellar length, the LF1p localizes almost exclusively in the cell body, with <1% of total cellular LF1p localizing to the flagella.
    Genetics 04/2005; 169(3):1415-24. · 4.39 Impact Factor
  • Source
    Nedra F Wilson, Paul A Lefebvre
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.
    Eukaryotic Cell 11/2004; 3(5):1307-19. · 3.59 Impact Factor
  • Source
    Erin E Dymek, Paul A Lefebvre, Elizabeth F Smith
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.
    Eukaryotic Cell 09/2004; 3(4):870-9. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth. Electron microscopic observation suggested that bld10 cells totally lack basal bodies. The product of the BLD10 gene (Bld10p) was found to be a novel coiled-coil protein of 170 kD. Immunoelectron microscopy localizes Bld10p to the cartwheel, a structure with ninefold rotational symmetry positioned near the proximal end of the basal bodies. Because the cartwheel forms the base from which the triplet microtubules elongate, we suggest that Bld10p plays an essential role in an early stage of basal body assembly. A viable mutant having such a severe basal body defect emphasizes the usefulness of Chlamydomonas in studying the mechanism of basal body/centriole assembly by using a variety of mutants.
    The Journal of Cell Biology 07/2004; 165(5):663-71. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simple, experimentally tractable systems such Saccharomy- ces cerevisiae, Chlamydomonas reinhardtii, and Arabidopsis thaliana are powerful models for dissecting basic biological processes. The unicellular green alga C. reinhardtii is amenable to a diversity of genetic and molecular manipulations. This haploid organism grows rapidly in axenic cultures, on both solid and liquid medium, with a sexual cycle that can be pre- cisely controlled. Vegetative diploids are readily selected through the use of complementing auxotrophic markers and are useful for analyses of deleterious recessive alleles. These genetic features have permitted the generation and character- ization of a wealth of mutants with lesions in structural, met- abolic and regulatory genes. Another important feature of C. reinhardtii is that it has the capacity to grow with light as a sole energy source (photoautotrophic growth) or on acetate in the dark (heterotrophically), facilitating detailed examination of genes and proteins critical for photosynthetic or respiratory function. Other important topics being studied using C. rein- hardtii, many of which have direct application to elucidation of protein function in animal cells (26), include flagellum struc- ture and assembly, cell wall biogenesis, gametogenesis, mating, phototaxis, and adaptive responses to light and nutrient envi- ronments (32, 44). Some of these studies are directly relevant to applied problems in biology, including the production of clean, solar-generated energy in the form of H2, and bioreme- diation of heavy metal wastes. Recent years have seen the development of a molecular toolkit for C. reinhardtii (42, 44, 66, 98, 99). Selectable markers are available for nuclear and chloroplast transformation (4, 5, 12, 13, 30, 44, 56, 82). The Arg7 (22) and Nit1 (30) genes are routinely used to rescue recessive mutant phenotypes. The bacterial ble gene (which codes for zeocin resistance (70, 112)) is an easily scored marker for nuclear transformation, and the bacterial aadA gene (which codes for spectinomycin and strep- tomycin resistance) is a reliable marker for chloroplast trans- formation (39). Nuclear transformation can be achieved by
    Eukaryotic Cell 01/2004; 2(6):1137-50. · 3.59 Impact Factor
  • Source
    Lai-Wa Tam, William L Dentler, Paul A Lefebvre
    [Show abstract] [Hide abstract]
    ABSTRACT: Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulges are found at the distal ends of short, long, and regenerating flagella of these mutants. Analysis of the flagella by electron and immunofluorescence microscopy and by Western blots revealed that the bulges contain intraflagellar transport complexes, a defect reported previously (for review see Cole, D.G., 2003. Traffic. 4:435-442) in a subset of mutants defective in intraflagellar transport. We have cloned the wild-type LF3 gene and characterized a hypomorphic mutant allele of LF3. LF3p is a novel protein located predominantly in the cell body. It cosediments with the product of the LF1 gene in sucrose density gradients, indicating that these proteins may form a functional complex to regulate flagellar length and assembly.
    The Journal of Cell Biology 12/2003; 163(3):597-607. · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.
    Current Biology 08/2003; 13(13):1145-9. · 9.49 Impact Factor

Publication Stats

3k Citations
295.08 Total Impact Points

Institutions

  • 1988–2013
    • University of Minnesota Duluth
      • Department of Chemistry and Biochemistry
      Duluth, Minnesota, United States
  • 2001–2012
    • University of Minnesota Twin Cities
      • • Department of Civil Engineering
      • • Department of Genetics, Cell Biology and Development
      Minneapolis, MN, United States
    • Exelixis, Inc
      San Francisco, California, United States
  • 1989–2005
    • University of Minnesota Morris
      Saint Paul, Minnesota, United States
  • 2001–2004
    • Max Planck Institute of Molecular Cell Biology and Genetics
      Dresden, Saxony, Germany
  • 1990
    • Cornell University
      Ithaca, New York, United States
    • Yale University
      New Haven, Connecticut, United States