Sandra L Dabora

Brigham and Women's Hospital , Boston, MA, United States

Are you Sandra L Dabora?

Claim your profile

Publications (25)117.34 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that serum VEGF-D is elevated at baseline, correlates with kidney angiomyolipoma size at baseline and 12 months, and decreases with sirolimus treatment in adults with tuberous sclerosis complex (TSC). To further investigate the utility of serum VEGF-D for longer term monitoring of TSC kidney disease, we present VEGF-D level results with 24 month follow-up. To compare 24 month VEGF-D levels in two subgroups of sirolimus treated patients (OFF SIROLIMUS AFTER 12 MONTHS or ON SIROLIMUS AFTER 12 MONTHS). DESIGN AND INTERVENTION(S): Serum VEGF-D was measured in samples collected from subjects enrolled in a phase 2 multicenter trial evaluating sirolimus for the treatment of kidney angiomyolipomas associated with TSC or TSC/LAM. All participants were treated with sirolimus from 0-12 months. During months 12-24, sirolimus was discontinued in one subgroup. The other subgroup was treated with additional sirolimus. Adult TSC participants were recruited from six clinical sites in the United States (comprehensive TSC clinics, 5; urology clinic, 1). There were 28 TSC patients who completed all 24 months of the study and serum samples were available at 24 months from 18/28 patients. We compared the percent change in VEGF-D levels (baseline to 24 months) in patients from the two treatment subgroups. At 24 months, VEGF-D levels decreased by 67% compared with baseline (to 787±426 pg/ml) in the ON SIROLIMUS AFTER 12 MONTHS group versus a 13% decrease (to 2971±4014 pg/ml) in the OFF SIROLIMUS AFTER 12 MONTHS group (p = 0.013, Mann-Whitney test). A similar trend was observed in kidney angiomyolipoma size but not in pulmonary function tests. Conclusions Serum VEGF-D may be useful for monitoring response to treatment with sirolimus and kidney angiomyolipoma size in patients with TSC, but confirmation is needed. Clinical trials.gov NCT00126672.
    PLoS ONE 01/2013; 8(2):e56199. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis (TSC) related tumors are characterized by constitutively activated mTOR signaling due to mutations in TSC1 or TSC2. We completed a phase 2 multicenter trial to evaluate the efficacy and tolerability of the mTOR inhibitor, sirolimus, for the treatment of kidney angiomyolipomas. 36 adults with TSC or TSC/LAM were enrolled and started on daily sirolimus. The overall response rate was 44.4% (95% confidence intervals [CI] 28 to 61); 16/36 had a partial response. The remainder had stable disease (47.2%, 17/36), or were unevaluable (8.3%, 3/36). The mean decrease in kidney tumor size (sum of the longest diameters [sum LD]) was 29.9% (95% CI, 22 to 37; n = 28 at week 52). Drug related grade 1-2 toxicities that occurred with a frequency of >20% included: stomatitis, hypertriglyceridemia, hypercholesterolemia, bone marrow suppression (anemia, mild neutropenia, leucopenia), proteinuria, and joint pain. There were three drug related grade 3 events: lymphopenia, headache, weight gain. Kidney angiomyolipomas regrew when sirolimus was discontinued but responses tended to persist if treatment was continued after week 52. We observed regression of brain tumors (SEGAs) in 7/11 cases (26% mean decrease in diameter), regression of liver angiomyolipomas in 4/5 cases (32.1% mean decrease in longest diameter), subjective improvement in facial angiofibromas in 57%, and stable lung function in women with TSC/LAM (n = 15). A correlative biomarker study showed that serum VEGF-D levels are elevated at baseline, decrease with sirolimus treatment, and correlate with kidney angiomyolipoma size (Spearman correlation coefficient 0.54, p = 0.001, at baseline). Sirolimus treatment for 52 weeks induced regression of kidney angiomyolipomas, SEGAs, and liver angiomyolipomas. Serum VEGF-D may be a useful biomarker for monitoring kidney angiomyolipoma size. Future studies are needed to determine benefits and risks of longer duration treatment in adults and children with TSC. Clinicaltrials.gov NCT00126672.
    PLoS ONE 01/2011; 6(9):e23379. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which encode a protein complex that inhibits mTOR kinase signaling by inactivating the Rheb GTPase. Activation of mTOR promotes the formation of benign tumors in various organs and the mechanisms underlying the neurological symptoms of the disease remain largely unknown. We found that Tsc2 haploinsufficiency in mice caused aberrant retinogeniculate projections that suggest defects in EphA receptor-dependent axon guidance. We also found that EphA receptor activation by ephrin-A ligands in neurons led to inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity and decreased inhibition of Tsc2 by ERK1/2. Thus, ephrin stimulation inactivates the mTOR pathway by enhancing Tsc2 activity. Furthermore, Tsc2 deficiency and hyperactive Rheb constitutively activated mTOR and inhibited ephrin-induced growth cone collapse. Our results indicate that TSC2-Rheb-mTOR signaling cooperates with the ephrin-Eph receptor system to control axon guidance in the visual system.
    Nature Neuroscience 02/2010; 13(2):163-72. · 15.25 Impact Factor
  • Source
    Chelsey Woodrum, Alison Nobil, Sandra L Dabora
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor disorder characterized by the growth of hamartomas in various organs including the kidney, brain, skin, lungs, and heart. Rapamycin has been shown to reduce the size of kidney angiomyolipomas associated with TSC; however, tumor regression is incomplete and kidney angiomyolipomas regrow after cessation of treatment. Mouse models of TSC2 related tumors are useful for evaluating new approaches to drug therapy for TSC. In cohorts of Tsc2+/- mice, we compared kidney cystadenoma severity in A/J and C57BL/6 mouse strains at both 9 and 12 months of age. We also investigated age related kidney tumor progression and compared three different rapamycin treatment schedules in cohorts of A/J Tsc2+/- mice. In addition, we used nude mice bearing Tsc2-/- subcutaneous tumors to evaluate the therapeutic utility of sunitinib, bevacizumab, vincristine, and asparaginase. TSC related kidney disease severity is 5-10 fold higher in A/J Tsc2+/- mice compared with C57BL/6 Tsc2+/- mice. Similar to kidney angiomyolipomas associated with TSC, the severity of kidney cystadenomas increases with age in A/J Tsc2+/- mice. When rapamycin dosing schedules were compared in A/J Tsc2+/- cohorts, we observed a 66% reduction in kidney tumor burden in mice treated daily for 4 weeks, an 82% reduction in mice treated daily for 4 weeks followed by weekly for 8 weeks, and an 81% reduction in mice treated weekly for 12 weeks. In the Tsc2-/- subcutaneous tumor mouse model, vincristine is not effective, but angiogenesis inhibitors (sunitinib and bevacizumab) and asparaginase are effective as single agents. However, these drugs are not as effective as rapamycin in that they increased median survival only by 24-27%, while rapamycin increased median survival by 173%. Our results indicate that the A/J Tsc2+/- mouse model is an improved, higher through-put mouse model for future TSC preclinical studies. The rapamycin dosing comparison study indicates that the duration of rapamycin treatment is more important than dose intensity. We also found that angiogenesis inhibitors and asparaginase reduce tumor growth in a TSC2 tumor mouse model and although these drugs are not as effective as rapamycin, these drug classes may have some therapeutic potential in the treatment of TSC related tumors.
    Journal of Translational Medicine 02/2010; 8:14. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor syndrome, characterized by hamartomatous growths in the brain, skin, kidneys, lungs, and heart, which lead to significant morbidity. TSC is caused by mutations in the TSC1 or TSC2 genes, whose products, hamartin and tuberin, form a tumor suppressor complex that regulates the PI3K/Akt/mTOR pathway. Early clinical trials show that TSC-related kidney tumors (angiomyolipomas) regress when treated with the mammalian target of rapamycin (mTOR) inhibitor, rapamycin (also known as sirolimus). Although side effects are tolerable, responses are incomplete, and tumor regrowth is common when rapamycin is stopped. Strategies for future clinical trials may include the investigation of longer treatment duration and combination therapy of other effective drug classes. Here, we examine the efficacy of a prolonged maintenance dose of rapamycin in Tsc2+/- mice with TSC-related kidney tumors. Cohorts were treated with rapamycin alone or in combination with interferon-gamma (IFN-g). The schedule of rapamycin included one month of daily doses before and after five months of weekly doses. We observed a 94.5% reduction in kidney tumor burden in Tsc2+/- mice treated (part one) daily with rapamycin (8 mg/kg) at 6 months <or= age < 7 months, (part 2) weekly with rapamycin (16 mg/kg) at 7 months <or= age < 12 months, and (part 3) daily with rapamycin (8 mg/kg) at 12 months <or= age < 13 months; but we did not observe any improvement with combination IFN-g plus rapamycin in this study. We also used a Tsc2-/- subcutaneous tumor model to evaluate other classes of drugs including sorafenib, atorvastatin, and doxycycline. These drugs were tested as single agents and in combination with rapamycin. Our results demonstrate that the combination of rapamycin and sorafenib increased survival and may decrease tumor volume as compared to rapamycin treatment alone while sorafenib as a single agent was no different than control. Atorvastatin and doxycycline, either as single agents or in combination with rapamycin, did not improve outcomes as compared with controls. Our results indicate that prolonged treatment with low doses of mTOR inhibitors may result in more complete and durable TSC-related tumor responses, and it would be reasonable to evaluate this strategy in a clinical trial. Targeting the Raf/Mek/Erk and/or VEGF pathways in combination with inhibiting the mTOR pathway may be another useful strategy for the treatment of TSC-related tumors.
    BMC Pharmacology 04/2009; 9:8.
  • Source
    Aubrey Rauktys, Nancy Lee, Laifong Lee, Sandra L Dabora
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin manifestations of Tuberous Sclerosis Complex (TSC) cause significant morbidity. The molecular mechanism underlying TSC is understood and there is evidence that systemic treatment with rapamycin or other mTOR inhibitors may be a useful approach to targeted therapy for the kidney and brain manifestations. Here we investigate topical rapamycin in a mouse model for TSC-related tumors. 0.4% and 0.8% rapamycin ointments were applied to nude mice bearing subcutaneous, TSC-related tumors. Topical treatments were compared with injected rapamycin and topical vehicle. Rapamycin levels in blood and tumors were measured to assess systemic drug levels in all cohorts. Treatment with topical rapamycin improved survival and reduced tumor growth. Topical rapamycin treatment resulted in systemic drug levels within the known therapeutic range and was not as effective as injected rapamycin. Topical rapamycin inhibits TSC-related tumor growth. These findings could lead to a novel treatment approach for facial angiofibromas and other TSC skin lesions.
    BMC Dermatology 02/2008; 8:1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to other molecularly targeted agents, temsirolimus, an inhibitor of mammalian target of rapamycin, has shown promising activity in advanced renal cell carcinoma. However, only a subset of patients appears to derive significant tumor responses. In an effort to identify potential predictors of response to temsirolimus, tumor samples from a subset of patients within a randomized phase II trial of temsirolimus in advanced renal cell carcinoma were studied. Paraffin-embedded tissue sections from patients who had received temsirolimus were immunostained with antibodies to carbonic anhydrase IX, phospho-S6, phospho-Akt (pAkt), and phosphotase and tensin homologue. Expression levels were correlated with objective response (partial response [PR], minor response [MR]) and clinical benefit (PR, MR, SD>or=4 cycles) to temsirolimus. In addition, von Hippel-Lindau (VHL) mutational analysis was performed and correlated with response. Tissue specimens were obtained from 20 patients who were evaluable for both tumor response and staining for phospho-S6 and carbonic anhydrase IX. In addition, 19 specimens were evaluable for pAkt, and 18 for phosphotase and tensin homologue. VHL mutational analysis was performed on 16 samples. Five patients achieved an objective response (1 PR/4 MRs) to temsirolimus. There was a positive association of phospho-S6 expression (P=.02) and a trend toward positive expression of pAkt (P=.07) with response to temsirolimus. No patient without high expression of either phospho-S6 or pAkt experienced an objective tumor response. There was no correlation of carbonic anhydrase IX and phosphotase and tensin homologue expression or VHL status with response to temsirolimus. These results suggest that phospho-S6 and pAkt expression are promising predictive biomarkers for response to temsirolimus that are worthy of further exploration for use in patient selection models for mammalian target of rapamycin inhibitors.
    Clinical Genitourinary Cancer 09/2007; 5(6):379-85. · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by mutations in either of two genes, TSC1 and TSC2. Point mutations and small indels account for most TSC1 and TSC2 mutations. We examined 261 TSC DNA samples (209 small-mutation-negative and 52 unscreened) for large deletion/duplication mutations using multiplex ligation-dependent probe amplification (MLPA) probe sets designed to permit interrogation of all TSC1/2 exons, as well as 15-50 kb of flanking sequence. Large deletion/duplication mutations in TSC1 and TSC2 were identified in 54 patients, of which 50 were in TSC2, and 4 were in TSC1. All but two mutations were deletions. Only 13 deletions were intragenic in TSC2, and one in TSC1, so that 39 (73%) deletions extended beyond the 5', 3' or both ends of TSC1 or TSC2. Mutations were identified in 24% of small-mutation-negative and 8% of unscreened samples. Eight of 54 (15%) mutations were mosaic, affecting 34-62% of cells. All intragenic mutations were confirmed by LR-PCR. Genotype/phenotype analysis showed that all (21 of 21) patients with TSC2 deletions extending 3' into the PKD1 gene had kidney cysts. Breakpoints of intragenic deletions were randomly distributed along the TSC2 sequence, and did not preferentially involve repeat sequence elements. Our own 20-plex probe sets gave more robust performance than the 40-plex probe sets from MRC-Holland. We conclude that large deletions in TSC1 and TSC2 account for about 0.5 and 6% of mutations seen in TSC patients, respectively, and MLPA is a highly sensitive and accurate detection method, including for mosaicism.
    Human Genetics 06/2007; 121(3-4):389-400. · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor tyrosine kinase/PI3K/Akt/mammalian target of rapamycin (RTK/PI3K/Akt/mTOR) pathway is frequently altered in tumors. Inactivating mutations of either the TSC1 or the TSC2 tumor-suppressor genes cause tuberous sclerosis complex (TSC), a benign tumor syndrome in which there is both hyperactivation of mTOR and inhibition of RTK/PI3K/Akt signaling, partially due to reduced PDGFR expression. We report here that activation of PI3K or Akt, or deletion of phosphatase and tensin homolog (PTEN) in mouse embryonic fibroblasts (MEFs) also suppresses PDGFR expression. This was a direct effect of mTOR activation, since rapamycin restored PDGFR expression and PDGF-sensitive Akt activation in Tsc1-/- and Tsc2-/- cells. Akt activation in response to EGF in Tsc2-/- cells was also reduced. Furthermore, Akt activation in response to each of EGF, IGF, and PMA was reduced in cells lacking both PDGFRalpha and PDGFRbeta, implying a role for PDGFR in transmission of growth signals downstream of these stimuli. Consistent with the reduction in PI3K/Akt signaling, in a nude mouse model both Tsc1-/- and Tsc2-/- cells had reduced tumorigenic potential in comparison to control cells, which was enhanced by expression of either active Akt or PDGFRbeta. In conclusion, PDGFR is a major target of negative feedback regulation in cells with activated mTOR, which limits the growth potential of TSC tumors.
    Journal of Clinical Investigation 04/2007; 117(3):730-8. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous Sclerosis Complex (TSC) is an autosomal dominant hamartoma disorder with variable expression for which treatment options are limited. TSC is caused by a mutation in either the TSC1 or TSC2 genes, whose products, hamartin and tuberin, function as negative regulators in the highly-conserved mammalian target of rapamycin (mTOR) signaling pathway. Rapamycin (also known as sirolimus), an mTOR inhibitor, has been shown to reduce disease severity in rodent models of TSC and is currently being evaluated in clinical trials in human populations. The cytokine interferon-gamma (IFN-gamma) is also a potential therapeutic agent for TSC. A high-expressing IFN-gamma allele has been associated with reduced disease severity in human TSC patients and it has been shown in mouse models that treatment with exogenous IFN-gamma reduces disease severity. Here, we examine the effects of treating Tsc2+/- mice at different time points with a rapamycin analog (CCI-779) as a single agent or with a combination of CCI-779 and IFN-gamma. We observed that administering a short course of CCI-779 or CCI-779 plus IFN-gamma reduced the severity of kidney lesions if administered after such lesions develop. As long as treatment is given after lesions arise, altering the time period during which treatment was given did not significantly impact the effect of the treatment on disease severity. We did not observe a significant benefit of combination therapy relative to treatment with a rapamycin analog alone in Tsc2+/- mice. We also compared timing of treatment and two mTOR inhibitors (rapamycin and CCI-779) in nude mice bearing Tsc2-/- tumors. Preventing the genesis of TSC-related kidney lesions in Tsc2+/- mice is not an effective treatment strategy; rather, the presence of growing tumors appears to be the most important factor when determining an appropriate treatment schedule. Treatment with rapamycin was more effective in reducing tumor growth and improving survival in nude mice bearing Tsc2-/- tumors and also resulted in higher rapamycin levels in blood, brain, and kidney tissue than treatment with an equal milligram dose of CCI-779. We anticipate these results will influence future preclinical and clinical trials for TSC.
    BMC Pharmacology 02/2007; 7:14.
  • Source
    Laifong Lee, Paul Sudentas, Sandra L Dabora
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis complex (TSC) is a familial tumor syndrome characterized by the development of hamartomas in the brain, heart, kidney, and skin. Disease-causing mutations in the TSC1 or TSC2 gene result in constitutive activation of the highly conserved mTOR signal transduction pathway, which regulates cell growth, proliferation, and metabolism. The mTOR inhibitor, rapamycin (sirolimus), reduces disease severity in rodent models of TSC, and is currently in phase II clinical trials. The cytokine interferon-gamma (IFN-gamma) is another potential therapeutic agent for TSC. A high-expressing IFN-gamma allele is associated with a lower frequency of kidney tumors in TSC patients, and treatment with exogenous IFN-gamma reduces the severity of TSC-related disease in mouse models. Here, we examine the effects of treating tumor-bearing nude mice with a combination of a rapamycin analog (CCI-779) and IFN-gamma. We observed that combination therapy was more effective than single agent therapy in reducing tumor growth and improving survival in this mouse model of TSC. Immunoblot and immunohistochemical analyses showed that tumors treated with CCI-779 plus IFN-gamma had decreased cell proliferation and increased cell death in comparison with untreated tumors or tumors treated with either agent alone. We also observed that CCI-779 resistance could develop with prolonged treatment. Taken together, our results show that targeting multiple cellular pathways is an effective strategy for treating TSC-related tumors, and underscore the importance of investigating combination therapy in future clinical trials for patients with TSC.
    Genes Chromosomes and Cancer 11/2006; 45(10):933-44. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis complex (TSC) is a familial tumor disorder for which there is no effective medical therapy. Disease-causing mutations in the TSC1 or TSC2 gene lead to increased mammalian target of rapamycin (mTOR) kinase activity in the conserved mTOR signaling pathway, which regulates nutrient uptake, cell growth, and protein translation. The normal function of TSC1 and TSC2 gene products is to form a complex that reduces mTOR kinase activity. Thus, mTOR kinase inhibition may be a useful targeted therapeutic approach. Elevated interferon-gamma (IFN-gamma) expression is associated with decreased severity of kidney tumors in TSC patients and mouse models; therefore, IFN-gamma also has therapeutic potential. We studied cohorts of Tsc2+/- mice and a novel mouse model of Tsc2-null tumors in order to evaluate the efficacy of targeted therapy for TSC. We found that treatment with either an mTOR kinase inhibitor (CCI-779, a rapamycin analog) or with IFN-gamma reduced the severity of TSC-related disease without significant toxicity. These results constitute definitive preclinical data that justify proceeding with clinical trials using these agents in selected patients with TSC and related disorders.
    Genes Chromosomes and Cancer 04/2005; 42(3):213-27. · 3.55 Impact Factor
  • Source
    Journal of Medical Genetics 06/2004; 41(5):e69. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis (TSC) is an autosomal dominant hamartoma syndrome due to mutations in either TSC1 or TSC2. Previous reports have identified a mutation consisting of a 34 bp deletion affecting portions of exon 38 and the adjacent intron 38 of TSC2. We found this genetic variation in 4 of 800 TSC patients screened for mutations in TSC1 and TSC2. In every case, the variant was present in one unaffected parent of the sporadically affected TSC child. By RT-PCR analysis of RNA samples from two additional families with this genetic variant, we demonstrate that the allele with the deletion generates about 50% normal RNA transcript, and 50% RNA transcript including intron 38. In addition, there is no correlation between the extent of splicing and clinical status of family members. We also excluded the possibility of mosaicism in the parents with this variant. We conclude that this deletion is a rare polymorphism that does not cause TSC, but may be a modifier of the TSC phenotype.
    Annals of Human Genetics 12/2003; 67(Pt 6):495-503. · 2.22 Impact Factor
  • Sandra L. Dabora, Michael Arad, Scott Barr, Jae Bum Kim
    Current Protocols in Human Genetics, 01/2003: pages 7.9.1 - 7.9.17; , ISBN: 9780471142904
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberous sclerosis complex (TSC) is a familial hamartoma syndrome in which renal involvement is common and, at times, life threatening. We have investigated the potential effect of a non-TSC gene on renal disease in a cohort of 172 TSC patients with TSC2 mutations. Patients were genotyped for an interferon-gamma (IFN-gamma) microsatellite polymorphism, within intron 1, for which one common allele (allele 2, with 12 CA repeats) has been shown to have a higher expression of IFN-gamma. A chi(2) analysis was used to examine the association between IFN-gamma allele 2 and the development of kidney angiomyolipomas (KAMLs) in this TSC2 cohort. Because of the age-dependent development of KAMLs in TSC, we initially focused on the 127 patients who were >5 years old. Additional subgroup analyses were done to investigate the influence of age and gender. The transmission/disequilibrium test (TDT) was also performed in a subset of this cohort (46 probands) for whom parent and/or sibling samples were available for analysis. Both chi(2) analysis and TDT suggested an association between IFN-gamma allele 2 and the absence of KAMLs in patients who have known TSC2 mutations. Among the 127 patients who were >5 years old, KAMLs were present in 95 (75%) and were absent in 32 (25%). In the group with KAML present, the frequency of IFN-gamma allele 2 was 56%; in the group with KAML absent, the frequency of IFN-gamma allele 2 was significantly higher, at 78% (P=.02, by chi(2) analysis). The family-based TDT analysis gave similar results, with a TDT statistic (TDT chi2=5.45) corresponding to a P value of.02. Subgroup analyses show that both age and gender may influence the impact of this association. Although these results should be replicated in other populations with TSC, the present study suggests that modifier genes play a role in the variable expression of TSC and also suggests a potential therapy for KAMLs in patients with TSC.
    The American Journal of Human Genetics 11/2002; 71(4):750-8. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inactivating mutations in the TSC2 gene, consisting of 41coding exons in 40 kb on 16p13, cause the hamartoma syndrome tuberous sclerosis. During TSC2 mutational analysis we identified ten SNPs that occur within or close to exon boundaries at minor allele frequencies greater than 5%. We determined the haplotypes for six of these SNPs and the microsatellite marker kg8 in the 3' region of TSC2 in a set of 40 parent-child trios. The most common haplotypes accounted for 53%, 11%, 6%, and 5% of chromosomes. Thirty-eight TSC2 mutation-bearing haplotypes had a similar distribution, indicating that there was no haplotype that predisposed to mutation in this region of TSC2. Family analysis was possible in 12 sporadic cases, and indicated that the mother was the parent of origin in 7 cases (3 point mutations, 2 small deletions, 2 large deletions), while the father was in 5 cases (2 point mutations, 3 small deletions). We conclude that TSC2 mutations occur at substantial frequency on both the maternally and paternally derived TSC2 alleles, in contrast to many other genetic diseases including NF1. The observations have implications for genetic counseling in TSC.
    Human Genetics 08/2002; 111(1):96-101. · 4.63 Impact Factor
  • Chest 04/2002; 121(3 Suppl):61S. · 7.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphangioleiomyomatosis (LAM) and multifocal micronodular pneumocyte hyperplasia (MMPH) produce cystic and nodular disease, respectively, in the lungs of patients with tuberous sclerosis. The objective of this study was to prospectively characterize the prevalence, clinical presentation, and genetic basis of lung disease in TSC. We performed genotyping and computerized tomographic (CT) scanning of the chest on 23 asymptomatic women with tuberous sclerosis complex (TSC). Cystic pulmonary parenchymal changes consistent with LAM were found in nine patients (39%). These patients tended to be older than cyst-negative patients (31.9 +/- 7.6 yr versus 24.8 +/- 11.6 yr, p = 0.09). There was no correlation between presence of cysts and tobacco use, age at menarche, history of pregnancy, or estrogen-containing medications. Three of the cyst-positive patients had a prior history of pneumothorax. Pulmonary function studies revealed evidence of gas trapping but normal spirometric indices in the cyst-positive group. All nine cyst-positive patients had angiomyolipomas (AML), which were larger (p < 0.05) and more frequently required intervention (p = 0.08) than cyst-negative patients (8 of 14 with AMLs, p < 0.05). Ten patients (43%) had pulmonary parenchymal nodules. Pulmonary nodules were more common in women with cysts (78% versus 21%, p < 0.05), and 52% of all patients had either cystic or nodular changes. TSC2 mutations were identified in all cyst-positive patients who were tested (n = 8), whereas both TSC1 and TSC2 mutations were found in patients with nodular disease. Correlation of the mutational and radiographic data revealed one pair of sisters who were discordant for cystic disease, two mother- daughter pairs who were discordant for nodular disease, and no clear association between cyst development and a specific mutational type. This prospective analysis demonstrates that cystic and nodular pulmonary changes consistent with LAM and MMPH are common in women with TSC.
    American Journal of Respiratory and Critical Care Medicine 09/2001; 164(4):661-8. · 11.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensitive and automated methods for the detection of DNA sequence variation are required for a wide variety of genetic studies. Diagnostic testing in human genetic disorders is one application of such methods. Tuberous sclerosis complex (TSC) is an autosomal dominant familial tumor syndrome characterized by the development of benign tumors (hamartomas) in multiple organs (OMIM # 19110, #191092). There is a high frequency of sporadic cases and significant demand from patients and families for genetic testing information. Two TSC genes have been identified (TSC1 and TSC2) and together account for all cases [1,2]. Here we report our methods for DHPLC analysis of the TSC1 gene and demonstrate the high sensitivity of this method in a blinded analysis of 21 TSC patients with known TSC1 mutations. In this series, DHPLC detected 27/28 (96%) known TSC1 sequence variations. The only sequence variation not identified by DHPLC in this study is a mosaic case.
    Journal of Biochemical and Biophysical Methods 02/2001; 47(1-2):33-7. · 2.33 Impact Factor

Publication Stats

1k Citations
117.34 Total Impact Points

Institutions

  • 1998–2013
    • Brigham and Women's Hospital
      • • Department of Medicine
      • • Division of Hematology
      Boston, MA, United States
  • 2011
    • Biogen Idec
      Weston, Massachusetts, United States
  • 2009
    • Partners HealthCare
      Boston, Massachusetts, United States
  • 2007
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 2002–2007
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States