John G Menke

Merck, Whitehouse Station, New Jersey, United States

Are you John G Menke?

Claim your profile

Publications (17)64.54 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: A search for a suitable replacement for the central norbornyl scaffold presented in the recently disclosed novel FLAP inhibitors is herein described, as well as the SAR study performed on the endo and exo-aryl groups.
    Bioorganic & medicinal chemistry letters 04/2012; 22(12):4133-8. · 2.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Liver X receptor (LXR) alpha and LXRbeta are closely related nuclear receptors that respond to elevated levels of intracellular cholesterol by enhancing transcription of genes that control cholesterol efflux and fatty acid biosynthesis. The consequences of inactivation of either LXR isoform have been thoroughly studied, as have the effects of simultaneous activation of both LXRalpha and LXRbeta by synthetic compounds. We here describe the effects of selective activation of LXRalpha or LXRbeta on lipid metabolism. This was accomplished by treating mice genetically deficient in either LXRalpha or LXRbeta with an agonist with equal potency for both isoforms (Compound B) or a synthetic agonist selective for LXRalpha (Compound A). We also determined the effect of these agonists on gene expression and cholesterol efflux in peritoneal macrophages derived from wild-type and knockout mice. Both compounds raised HDL-cholesterol and increased liver triglycerides in wild-type mice; in contrast, in mice deficient in LXRalpha, Compound B increased HDL-cholesterol but did not cause hepatic steatosis. Compound B induced ATP-binding cassette transporter (ABC) A1 expression and stimulated cholesterol efflux in macrophages from both LXRalpha and LXRbeta-deficient mice. Our data lend further experimental support to the hypothesis that LXRbeta-selective agonists may raise HDL-cholesterol and stimulate macrophage cholesterol efflux without causing liver triglyceride accumulation.
    Biochemical Pharmacology 03/2006; 71(4):453-63. · 4.58 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A series of podocarpic acid amides were identified as potent agonists for Liver X receptor alpha and beta subtypes, which are members of a nuclear hormone receptor superfamily that are involved in the regulation of a variety of metabolic pathways including cholesterol metabolism. We recently reported podocarpic acid anhydride and imide dimers as potent LXR agonists. Through parallel organic synthesis, we rapidly identified a series of new podocarpate leads with stable structures exemplified by adamantyl- and phenylcyclohexylmethyl-podocarpic acid amides (14 and 18). Compound 18 exhibited LXRalpha/beta 50/20 nM (binding affinity) and 33.7/35.3-fold receptor inductions. Synthesis, SAR, and biological activities of new podocarpate analogs are discussed.
    Bioorganic & Medicinal Chemistry Letters 11/2005; 15(20):4574-8. · 2.34 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Liver X receptors (LXR) are nuclear hormone receptors that play a critical role in cholesterol homeostasis. They regulate the expression of the ABCA1 gene, which mediates the efflux of cholesterol out of cells. LXR agonists are expected to increase cholesterol efflux, lower LDL, and raise HDL levels. Screening of a natural product library of microbial extracts using a LXR-SPA binding assay and bioassay-guided fractionation of an active extract of a Streptomyces sp. (MA6657) led to the discovery of two new hexacyclic aromatic ketones, (-)-anthrabenzoxocinone [(-)-ABX (1)], an enantiomer of BE-24566B, and (-)-bischloroanthrabenzoxocinone [(-)-BABX (2)]. The IC50 values of LXRalpha-SPA binding are 2 microM for (-)-ABX and 10 microM for (-)-BABX. This extract was also found to inhibit type II fatty acid synthesis, and its active component, (-)-BABX, was responsible for the majority of the inhibition. All three compounds showed good Gram-positive antibacterial activity (MIC 0.5-2 microg/mL). Details of the isolation, structure elucidation, LXR ligand binding, antibacterial activity, and selectivity of inhibition of 1 and 2 are described.
    Journal of Natural Products 10/2005; 68(9):1437-40. · 3.29 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cholesterol homeostasis is tightly controlled process that involves a variety of regulators including liver X receptors (LXR). Agonists of LXR are expected to increase cholesterol efflux, lower LDL, and raise HDL levels. Screening of a natural product library of microbial extracts using a LXR-scintillation proximity assay (SPA) binding assay and bioassay-guided fractionation of a number of fungal extracts led to the isolation of five ergostane and a cycloartane derivative. These compounds exhibited IC50 value ranging 0.5 approximately 9 microM in the binding assay for a-receptor and a number of these showed in vitro agonist activity in the coactivator association assays but lacked the cell based LXR activation. The isolation and LXR activity of these compounds are described.
    The Journal of Antibiotics 10/2005; 58(9):559-65. · 2.19 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: It has been demonstrated that liver X receptors (LXR) play a significant role in cholesterol homeostasis. Agonists of LXR are expected to increase cellular cholesterol efflux, lower LDL, and raise HDL levels. Screening of a natural product library of plant extracts using a LXR-SPA binding assay and bioassay-guided fractionation of a number of plant and marine gorgonian extracts led to the isolation of a number of active compounds. These included acanthoic acid (1) and alcohol (2), viperidone (3), polycarpol (4), rosacea acid (5), a cycloartane derivative (6), a new cycloartane analogue (7), betulinic acid (8), and gorgostane derivatives (9, 10, and 11). Of these compounds, 1, 4, and 11 exhibited potent binding affinity for alpha-receptor with IC(50) values of 0.25, 0.12, and 0.07 microM, respectively. Functionally they also showed strong coactivator association stimulation for LXRalpha receptor with EC50 values of 0.18, 0.03, and 0.05 microM, respectively. They also exhibited 15-, 8-, and 13-fold induction of the alpha-receptor in a transactivation assay in HEK-293 cells, respectively. In general these compounds were selective for the LXR alpha-receptor over the beta-receptor in all assays and were much better stimulators of the alpha-receptor than the endogenous steroid ligands.
    Journal of Natural Products 09/2005; 68(8):1247-52. · 3.29 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Liver X receptors are nuclear receptors that regulate metabolism of cholesterol. They are activated by oxysterols resulting in increased transcription of the ABCA1 gene, promoting cholesterol efflux and HDL formation. We have identified podocarpic acid anhydride as a 1nM agonist of LXRalpha and beta receptors. Functionally this agonist was over 8-10-fold better activator of LXR receptors compared to one of the natural ligands, 22-(R)-hydroxy cholesterol, in HEK-293 cells. An imide analog increased the level of HDL by 26%, decreased LDL by 10.6%, and increased triglyceride by 51% in hamsters. Discovery, synthesis, SAR and details of the activities of dimers have been described.
    Bioorganic & Medicinal Chemistry Letters 07/2005; 15(11):2824-8. · 2.34 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Liver X receptors (LXR) have been implicated in cholesterol homeostasis. Agonists of LXR are expected to increase cholesterol efflux, lower LDL, and raise HDL levels. Screening of a natural product library of plant extracts using a LXR-SPA binding assay and bioassay-guided fractionation of the bark and stem extract of Garcinia humilis led to the discovery of a new polyisoprenylated benzophenone named guttiferone I (1). The IC(50) value for this compound in the LXRalpha-SPA binding assay was 3.4 muM. Details of the isolation, structure elucidation, and ligand binding activity of 1 are described.
    Journal of Natural Products 05/2005; 68(4):617-9. · 3.29 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Activation of liver X receptors (LXRs) induces reverse cholesterol transport and increases high-density lipoprotein cholesterol in vivo. Here, we describe novel, functional, homogeneous cell-based fluorescence resonance energy transfer assays for identifying agonists of LXRs using beta-lactamase as the reporter gene. Stable Chinese hamster ovary cell lines expressing LXRalpha-GAL4 or LXRbeta-GAL4 fusion proteins that regulate beta-lactamase transcription from upstream 7 x UAS GAL4 DNA binding sequences were generated and characterized. Synthetic and natural ligands of LXR dose-dependently activated the expression of beta-lactamase in a subtype-specific manner. These assays were used to demonstrate that a 1-pyridyl hydantoin small molecule LXR synthetic ligand specifically activates LXRalpha receptors. The beta-lactamase assays were optimized for cell density, dimethyl sulfoxide sensitivity, and time of agonist stimulation. Clonal LXRbeta-GAL4-beta-lactamase cells were miniaturized into an ultra high throughput (3456-well nanoplates) screening format.
    Assay and Drug Development Technologies 01/2004; 1(6):777-87. · 1.90 Impact Factor
  • Source
    Erik G Lund, John G Menke, Carl P Sparrow
    [show abstract] [hide abstract]
    ABSTRACT: The recent identification of liver X receptors (LXR) as regulators of the cholesterol and phospholipid export pump ABCA1 has raised the possibility that LXR agonists could be developed as HDL-raising agents, possibly also acting on the artery wall to stimulate cholesterol efflux from lipid-laden macrophages. Presently several pharmaceutical companies are working to develop such compounds, which will require finding a path for separating these beneficial effects from the detrimental stimulation of triglyceride synthesis also inherent to LXR agonists. Other challenges to the drug development process include species differences, which makes prediction of in vivo effects of LXR agonists in humans difficult. This review summarizes the present state of knowledge on LXR as a drug target and discusses possible solutions for dissociating the favorable effects of LXR agonists from their unwanted effects.
    Arteriosclerosis Thrombosis and Vascular Biology 08/2003; 23(7):1169-77. · 6.34 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The liver X receptors, LXRalpha and LXRbeta, are members of the nuclear receptor superfamily. Originally identified as orphans, both receptor subtypes have since been shown to be activated by naturally occurring oxysterols. LXRalpha knockout mice fail to regulate cyp7a mRNA levels upon cholesterol feeding, implicating the role of this receptor in cholesterol homeostasis. LXR activation also induces the expression of the lipid pump involved in cholesterol efflux, the gene encoding ATP binding cassette protein A1 (ABCA1). Therefore, LXR is believed to be a sensor of cholesterol levels and a potential therapeutic target for atherosclerosis. Here we describe a synthetic molecule named F(3)MethylAA [3-chloro-4-(3-(7-propyl-3-trifluoromethyl-6-(4,5)-isoxazolyl)propylthio)-phenyl acetic acid] that is more potent than 22(R)-hydroxycholesterol in LXR in vitro assays. F(3)MethylAA is capable not only of inducing ABCA1 mRNA levels, but also increasing cholesterol efflux from THP-1 macrophages. In rat hepatocytes, F(3)MethylAA induced cyp7a mRNA, confirming conclusions from the knockout mouse studies. Furthermore, in rat in vivo studies, F(3)MethylAA induced liver cyp7a mRNA and enzyme activity. A critical species difference is also reported in that neither F(3)MethylAA nor 22(R)-hydroxycholesterol induced cyp7a in human primary hepatocytes. However, other LXR target genes, ABCA1, ABCG1, and SREBP1, were regulated.
    Endocrinology 08/2002; 143(7):2548-58. · 4.72 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Two ATP-binding cassette transporter proteins, ABCA1 and ABCG1, may mediate an active efflux of cellular cholesterol and phospholipids. They are ubiquitously expressed and are subject to regulation by cholesterol loading or by treatment with agents that activate the nuclear hormone receptor LXR. Earlier studies in both primates and non-primates reported that treatment with endotoxin (bacterial lipopolysaccharide, LPS) reduces plasma levels of HDL cholesterol. To determine if such HDL reduction correlates with a change in ABCA1 or ABCG1 expression, their expressions were measured in THP-1 monocytes and mice treated with LPS. LPS treatment leads to a rapid, dose-dependent increase of ABCA1 but not ABCG1 mRNA expression. Analysis of mouse livers showed that LPS treatment decreases expression of CYP7A, another target gene of LXR. When THP-1 cells were transfected with the ABCA1 promoter construct (-928 to +101 bp), promoter activity was significantly increased by treatment of 22(R)-hydroxycholesterol but not by LPS. Together, these studies show that LPS regulates ABCA1 expression through an LXR-independent mechanism. Further studies showed that treatment with Rhodobacter sphaeroiders LPS, an LPS antagonist, or PD169316, a specific p38 MAP kinase inhibitor, prevented the induction of ABCA1 by LPS. Therefore, this suggests that both transport of LPS from the plasma membrane to an intracellular site and activation of p38 MAP kinase are involved in the LPS-mediated induction of ABCA1.
    The Journal of Lipid Research 07/2002; 43(6):952-9. · 4.39 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The LXR nuclear receptors are intracellular sensors of cholesterol excess and are activated by various oxysterols. LXRs have been shown to regulate multiple genes of lipid metabolism, including ABCA1 (formerly known as ABC1). ABCA1 is a lipid pump that effluxes cholesterol and phospholipid out of cells. ABCA1 deficiency causes extremely low high density lipoprotein (HDL) levels, demonstrating the importance of ABCA1 in the formation of HDL. The present work shows that the acetyl-podocarpic dimer (APD) is a potent, selective agonist for both LXRalpha (NR1H3) and LXRbeta (NR1H2). In transient transactivation assays, APD was approximately 1000-fold more potent, and yielded approximately 6-fold greater maximal stimulation, than the widely used LXR agonist 22-(R)-hydroxycholesterol. APD induced ABCA1 mRNA levels, and increased efflux of both cholesterol and phospholipid, from multiple cell types. Gas chromatography-mass spectrometry measurements demonstrated that APD stimulated efflux of endogenous cholesterol, eliminating any possible artifacts of cholesterol labeling. For both mRNA induction and stimulation of cholesterol efflux, APD was found to be more effective than was cholesterol loading. Taken together, these data show that APD is a more effective LXR agonist than endogenous oxysterols. LXR agonists may therefore be useful for the prevention and treatment of atherosclerosis, especially in the context of low HDL levels.
    Journal of Biological Chemistry 04/2002; 277(12):10021-7. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: ATP-binding cassette transporter A1 (ABCA1) mediates an active efflux of cholesterol and phospholipids and is mutated in patients with Tangier disease. Expression of ABCA1 may be increased by certain oxysterols such as 22(R)-hydroxycholesterol via activation of the nuclear hormone receptor liver X receptor (LXR). In searching for potential modulators of ABCA1 expression, we have studied the effects of various mevalonate metabolites on the expression of ABCA1 in two human cell lines, THP-1 and Caco-2 cells. Most of the tested metabolites, including mevalonate, geranyl pyrophosphate, farnesyl pyrophosphate, and ubiquinone, failed to significantly change the expression levels of ABCA1. However, treatment with geranylgeranyl pyrophosphate resulted in a dose- and time-dependent reduction of ABCA1 expression. Geranylgeranyl pyrophosphate appears to reduce ABCA1 expression via two different mechanisms. One of these mechanisms is by acting directly as an antagonist of LXR since it reduces the interaction between LXR alpha or -beta with nuclear coactivator SRC-1. Another mechanism appears to involve activation of the Rho GTP-binding proteins since treatment of Caco-2 cells with inhibitors of geranylgeranyl transferase or the Rho proteins significantly increased the expression and promoter activity of ABCA1. Further studies showed that mutations in the DR4 element of the ABCA1 promoter completely eliminate the inducible activities of these inhibitors. These data indicate that activation of the Rho proteins may change the activation status of LXR.
    Journal of Biological Chemistry 01/2002; 276(52):48702-8. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The nuclear receptors liver X receptor alpha (LXRalpha) (NR1H3) and LXRbeta (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1, ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.
    Journal of Biological Chemistry 11/2001; 276(42):38378-87. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Insulin-sensitizing thiazolidinedione (TZD) compounds are high affinity ligands for a member of the nuclear receptor family, peroxisome proliferator-activated receptor (PPAR) gamma. A scintillation proximity assay for measurement of 3H-radiolabeled TZD binding to human PPARgamma under homogeneous conditions was developed. Using this approach, a novel non-TZD compound (L-764406) was shown to be a potent (apparent binding IC50 of 70 nM) PPARgamma ligand. Preincubation of PPARgamma with L-764406 prevented binding of the [3H]TZD, suggesting a covalent interaction with the receptor; in addition, structurally related analogues of L-764406, which would be predicted not to interact with PPARgamma in a covalent fashion, did not displace [3H]TZD binding to PPARgamma. Covalent binding of L-764406 was proven by an observed molecular weight shift of a tryptic PPARgamma ligand binding domain (LBD) peptide by mass spectrometric analysis. A specific cysteine residue (Cys313 in helix 3 of hPPARgamma2) was identified as the attachment site for this compound. In protease protection experiments, the liganded receptor adopted a typical agonist conformation. L-764406 exhibited partial agonist activity in cells expressing a chimeric receptor containing the PPARgamma LBD and a cognate reporter gene and also induced the expression of the adipocyte-specific gene aP2 in 3T3-L1 cells. In contrast, L-764406 did not exhibit activity in cells transfected with chimeric receptors containing PPARalpha or PPARdelta LBDs. The partial agonist properties of L-764406 were also evident in a co-activator association assay, indicating that the increased transcription in cells was co-activator mediated. Thus, L-764406 is a novel non-TZD ligand for PPARgamma and is also the first known partial agonist for this receptor. The results suggest a critical functional role for Cys313, and helix 3, in contributing to ligand binding and subsequent agonist-induced conformational changes.
    Journal of Biological Chemistry 04/1999; 274(12):7913-22. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Insulin-sensitizing thiazolidinedione (TZD) compounds are high affinity ligands for a member of the nuclear receptor family, peroxisome proliferator-activated receptor (PPAR) γ. A scintillation proximity assay for measurement of3H-radiolabeled TZD binding to human PPARγ under homogeneous conditions was developed. Using this approach, a novel non-TZD compound (L-764406) was shown to be a potent (apparent binding IC50 of 70 nm) PPARγ ligand. Preincubation of PPARγ with L-764406 prevented binding of the [3H]TZD, suggesting a covalent interaction with the receptor; in addition, structurally related analogues ofL-764406, which would be predicted not to interact with PPARγ in a covalent fashion, did not displace [3H]TZD binding to PPARγ. Covalent binding of L-764406 was proven by an observed molecular weight shift of a tryptic PPARγ ligand binding domain (LBD) peptide by mass spectrometric analysis. A specific cysteine residue (Cys313 in helix 3 of hPPARγ2) was identified as the attachment site for this compound. In protease protection experiments, the liganded receptor adopted a typical agonist conformation. L-764406 exhibited partial agonist activity in cells expressing a chimeric receptor containing the PPARγ LBD and a cognate reporter gene and also induced the expression of the adipocyte-specific gene aP2 in 3T3-L1 cells. In contrast,L-764406 did not exhibit activity in cells transfected with chimeric receptors containing PPARα or PPARδ LBDs. The partial agonist properties of L-764406 were also evident in a co-activator association assay, indicating that the increased transcription in cells was co-activator mediated. Thus,L-764406 is a novel non-TZD ligand for PPARγ and is also the first known partial agonist for this receptor. The results suggest a critical functional role for Cys313, and helix 3, in contributing to ligand binding and subsequent agonist-induced conformational changes.
    Journal of Biological Chemistry 03/1999; 274(12):7913-7922. · 4.65 Impact Factor