U K Misra

Duke University Medical Center, Durham, NC, United States

Are you U K Misra?

Claim your profile

Publications (79)318.89 Total impact

  • Source
    Uma Kant Misra, Salvatore Vincent Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M*) PDK1 phosphorylates Akt in the T-loop at Thr(308) by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308) in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308), which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308) by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein.
    PLoS ONE 01/2014; 9(2):e88373. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: α2-Macroglobulin (α2M) is a broad spectrum proteinase inhibitor that when activated by proteinases (α2M*) undergoes a major conformational change exposing receptor recognition sites in each of its four subunits. These complexes bind to two distinct receptors, namely, the low-density lipoprotein receptor-related protein (LRP) and cell surface glucose-regulated protein [Mr ∼ 78000 (GRP78)]. The latter is a very high affinity receptor (Kd = 50-100 pM) whose ligation triggers pro-proliferative and anti-apoptotic signaling cascades. Despite its four binding sites, Scatchard analysis of binding of α2M* to cells does not yield a cooperative plot. We, therefore, hypothesize that a monomeric cloned and expressed α2M receptor binding domain (RBD) should trigger comparable signaling events. Indeed, RBD or its K1370A mutant that binds to GRP78 but cannot bind to LRP regulates DNA and protein synthesis by human prostate cancer cells in a manner comparable to that of α2M*. Akt and mTORC1 activation and signaling are also comparably upregulated by α2M*, RBD, or mutant K1370A. Antibodies directed against the carboxyl-terminal domain of GRP78 are antagonists that block α2M*-mediated effects on pro-proliferative and anti-apoptotic signaling cascades and protein and DNA synthesis. The effects of RBD and its mutant were similarly blocked by these antibodies. Finally, proteolysis of α2M at pH values from 5.7 to 7.0 causes production of free RBD and RBD-containing fragments. Thus, while α2M* ligates only one GRP78 receptor molecule per α2M*, it may potentially serve as a reservoir for release of up to four binding fragments per molecule.
    Biochemistry 05/2013; · 3.38 Impact Factor
  • Source
    Uma Kant Misra, Salvatore Vincent Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. 8-CPT-2Me-cAMP treatment caused a 2-2.5-fold increase of p-cPLA2(S505), COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinase(T389), and p-AKT(S473). In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling.
    PLoS ONE 01/2013; 8(4):e63150. · 3.53 Impact Factor
  • Source
    Uma K Misra, Salvatore V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetrameric α(2)-macroglobulin (α(2)M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α(2)M (α(2)M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α(2)M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells. Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies. Stimulation of cells with α(2)M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, Akt(T308), and Akt(S473) in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α(2)M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α(2)M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α(2)M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of Akt(S473) phosphorylation and levels of p-Akt(S473) in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α(2)M*-induced phosphorylation of Akt(S473) phosphorylation in Rictor immunoprecipitates. Binding of α(2)M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.
    PLoS ONE 01/2012; 7(12):e51735. · 3.53 Impact Factor
  • Uma K Misra, Salvatore V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Ligation of cell surface-associated GRP78 by activated α(2) -macroglobulin triggers pro-proliferative cellular responses. In part, this results from activation of adenylyl cyclase leading to an increase in cAMP. We have previously employed the cAMP analog 8-CPT-2Me-cAMP to probe these responses. Here we show in 1-LN prostate cancer cells that 8-CPT-2Me-cAMP causes a dose-dependent increase in Epac1, p-Akt(T308) , p-Akt(S473) , but not p-CREB. By contrast, the PKA activator 6-Benz-cAMP caused a dose-dependent increase in p-CREB, but not Epac1. We measured mTORC2-dependent Akt phosphorylation at S473 in immunoprecipitates of mTOR or Rictor from 1-LN cells. 8-CPT-2Me-cAMP caused a two-threefold increase in p-Akt(S473) and Akt(S473) kinase activity in Rictor immunoprecipitates. By contrast, there was only a negligible effect on p-Akt(T308) in Rictor immunoprecipitates. Silencing Rictor gene expression by RNAi significantly suppressed 8-CPT-2Me-cAMP-induced phosphorylation of Akt at Ser(473) . These studies represent the first report that Epac1 mediates mTORC2-dependent phosphorylation of Akt(S473) . Pretreatment of these cells with the PI 3-Kinase inhibitor LY294002 significantly suppressed 8-CPT-2Me-cAMP-dependent p-Akt(S473) and p-Akt(S473) kinase activities, and both effects were rapamycin insensitive. This treatment caused a two to threefold increase in S6 Kinase and 4EBP1 phosphorylation, indices of mTORC1 activation. Pretreatment of the cells with LY294002 and rapamycin significantly suppressed 8-CPT-2Me-cAMP-induced phosphorylation of S6 Kinase and 4EBP1. We further demonstrate that in 8-CPT-2Me-cAMP-treated cells, Epac1 co-immunoprecipitates with AKAP, Raptor, Rictor, PDE3B, and PDE4D suggesting thereby that during Epac1-induced activation of mTORC1 and mTORC2, Epac1 may have an additional function as a "scaffold" protein.
    Journal of Cellular Biochemistry 12/2011; 113(5):1488-500. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-recognized forms of α₂ -macroglobulin (α₂ M) bind to cell surface-associated GRP78 and initiate pro-proliferative and anti-apoptotic signaling. Ligation of GRP78 with α₂ M also upregulates TFII-I, which binds to the GRP78 promoter and enhances GRP78 synthesis. In addition to its transcriptional functions, cytosolic TFII-I regulates agonist-induced Ca(2+) entry. In this study we show that down regulation of TFII-I gene expression by RNAi profoundly impairs its cell surface expression and anti-apoptotic signaling as measured by significant reduction of GRP78, Bcl-2, and cyclin D1 in 1-Ln and DU-145 human prostate cancer cells stimulated with α₂ M. In contrast, this treatment significantly increases levels of the pro-apoptotic proteins p53, p27, Bax, and Bak and causes DNA fragmentation. Furthermore, down regulation of TFII-I expression activates agonist-induced Ca(2+) entry. In plasma membrane lysates p-PLCγ1, TRPC3, GRP78, MTJ1, and caveolin co-immunoprecipitate with TFII-I suggesting multimeric complexes of these proteins. Consistent with this hypothesis, down regulating TFII-I, MTJ1, or GRP78 expression by RNAi greatly attenuates cell surface expression of TFII-I. In conclusion, we demonstrate that not only does cell surface GRP78 regulate apoptosis, but it also regulates Ca(2+) homeostasis by controlling cell surface localization of TFII-I.
    Journal of Cellular Biochemistry 06/2011; 112(6):1685-95. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GRP78, a well characterized chaperone in the endoplasmic reticulum, is critical to the unfolded protein response. More recently, it has been identified on the cell surface, where it has many roles. On cancer cells, it functions as a signaling receptor coupled to proproliferative/antiapoptotic and promigratory mechanisms. In the current study, we demonstrate that ligation of prostate cancer cell surface GRP78 by its natural ligand, activated α2-macroglobulin (α2M*), results in a 2–3-fold up-regulation in the synthesis of prostate-specific antigen (PSA). The PSA is secreted into the medium as an active proteinase, where it binds to native α2M. The resultant α2M·PSA complexes bind to GRP78, causing a 1.5–2-fold increase in the activation of MEK1/2, ERK1/2, S6K, and Akt, which is coupled with a 2–3-fold increase in DNA and protein synthesis. PSA is a marker for the progression of prostate cancer, but its mechanistic role in the disease is unclear. The present studies suggest that PSA may be involved in a signal transduction-dependent feedback loop, whereby it promotes a more aggressive behavior by human prostate cancer cells.
    Journal of Biological Chemistry 01/2011; 286(2):1248-1259. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unfolded protein response (UPR) is an adaptive survival mechanism through which cells can weather the stress of misfolded protein accumulation induced by a wide variety of pathophysiologic and pharmacologic insults. The ER chaperone GRP78 is a central modulator of the UPR both through its protein-binding capacity and its direct regulation of the UPR signaling molecules IRE1α, PERK, and ATF6. Recent reports have revealed the presence of GRP78 on the surface of cancer cells. Biological roles for cell-surface GRP78 include competing NH(2)-domain and COOH-domain agonist receptor activities that induce opposite effects on proliferation and apoptosis. Modulation of the UPR impacts both of these processes directly and indirectly. Here, we outline methods that we use to investigate UPR modulation via direct ligation of cell-surface GRP78. Specifically, we review methods of cell culture, cell-signaling analysis with emphasis on UPR components, and ultimately, the impact that these have on cell proliferation, survival, and apoptosis.
    Methods in enzymology 01/2011; 489:245-57. · 1.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GRP78, a well characterized chaperone in the endoplasmic reticulum, is critical to the unfolded protein response. More recently, it has been identified on the cell surface, where it has many roles. On cancer cells, it functions as a signaling receptor coupled to proproliferative/antiapoptotic and promigratory mechanisms. In the current study, we demonstrate that ligation of prostate cancer cell surface GRP78 by its natural ligand, activated α(2)-macroglobulin (α(2)M*), results in a 2-3-fold up-regulation in the synthesis of prostate-specific antigen (PSA). The PSA is secreted into the medium as an active proteinase, where it binds to native α(2)M. The resultant α(2)M·PSA complexes bind to GRP78, causing a 1.5-2-fold increase in the activation of MEK1/2, ERK1/2, S6K, and Akt, which is coupled with a 2-3-fold increase in DNA and protein synthesis. PSA is a marker for the progression of prostate cancer, but its mechanistic role in the disease is unclear. The present studies suggest that PSA may be involved in a signal transduction-dependent feedback loop, whereby it promotes a more aggressive behavior by human prostate cancer cells.
    Journal of Biological Chemistry 11/2010; 286(2):1248-59. · 4.65 Impact Factor
  • U K Misra, S Kaczowka, S V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Ligation of cancer cell surface GRP78 by activated alpha2-macroglobulin (alpha2M*) triggers pro-proliferative and anti-apoptotic signaling pathways. Cancer patients who develop autoantibodies to the alpha2M* binding site in GRP78 have a poor prognosis since these antibodies are receptor agonists. The NF-kappaB family of transcription factors induces expression of genes affecting cell growth and differentiation. NF-kappaB1 plays a major regulatory role in controlling innate immunity and inflammation, whereas NF-kappaB2 plays a greater role in cancer cell proliferation. Here we report that treatment of prostate cancer cells with antibody directed against the carboxyl terminal domain of GRP78 inhibits alpha2M*-induced activation of NF-kappaB2 by approximately 50% while exerting a lesser effect of approximately 20% on NF-kappaB1 activation. Treatment of these cells nearly abolished alpha2M*-induced activation of IKKalpha involved in the activation of NF-kappaB2. This antibody also suppressed alpha2M*-induced phosphorylation of IKKalpha, IKKalpha/beta, IkappaBalpha, and IkappaBbeta as well as levels of NIK. Antibody treatment of cancer cells elevated pro-apoptotic p21WAF and p27kip while reducing cyclin D1 levels. These studies demonstrate that antibody directed against the carboxyl terminal domain of GRP78 inhibits the pro-proliferative NF-kappaB signaling cascade in cancer cells.
    Biochemical and Biophysical Research Communications 02/2010; 392(4):538-42. · 2.28 Impact Factor
  • U K Misra, S V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) bind to cancer cell surface GRP78, which functions as a signaling receptor promoting proliferation and survival. Patients with prostate, ovary, and skin cancer may develop auto-antibodies to the alpha(2)M* binding site which are receptor agonists whose presence indicates a poor prognosis. By contrast, antibodies directed against the COOH-terminal domain of GPR78 (anti-CTD antibody), are antagonists which down regulate pro-proliferative signaling and upregulate p53. Unfolded protein response (UPR) signaling plays an important role in cell survival and proliferation as well as apoptosis. We, therefore, studied the effect of anti-CTD antibody on UPR signaling in 1-LN and DU-145 prostate cancer cells. Treatment of these cells, which express GRP78 on their cell surface, with this antibody significantly downregulated IRE1-alpha, PERK, and ATF6alpha-dependent UPR signaling. By contrast, the pro-apoptotic protein GADD153 was elevated. Anti-CTD antibody treatment also elevated apoptotic components, cleaved PARP-1, and Erdj5. In general, a two to threefold effect was observed for the parameters which were studied. These studies suggest that anti-CTD antibody induces growth inhibitory and pro-apoptotic effects by modulating UPR signaling in human prostate cancer cells.
    Apoptosis 02/2010; 15(2):173-82. · 4.07 Impact Factor
  • Uma K Misra, Salvatore V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.
    Cancer biology & therapy 01/2010; 9(2):142-52. · 3.29 Impact Factor
  • U K Misra, S V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies against the COOH-terminal domain of cell surface GRP78 induce apoptosis in cancer cell lines via activation of p53 signaling. We now have studied the effects of PFT-alpha, an inhibitor of p53-mediated apoptotic pathways, on anti-GRP78 antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Pretreatment of 1-LN cancer cells with this agent significantly inhibited antibody or doxorubicin-induced upregulation of p53. Concomitantly, PFT-alpha treatment prevented down regulation of ERK1/2 activation by either antibody or doxorubicin. Likewise, PFT-alpha prevented increases in the pro-apoptotic proteins BAD, BAK, BAX, PUMA, and NOXA as well as activation of caspases-3, -7, and -9. We conclude that antibody-induced apoptosis in prostate cancer cells is mediated predominantly by p53 using the mitochondrial pathway of apoptosis.
    Biochemical and Biophysical Research Communications 11/2009; 391(1):272-6. · 2.28 Impact Factor
  • Uma Kant Misra, Salvatore Vincent Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: cAMP-dependent, PKA-independent effects on cell proliferation are mediated by cAMP binding to EPAC and activation of Rap signaling. In this report, we employed the analogue 8-CPT-2-O-Me-cAMP to study binding to EPAC and subsequent activation of B-Raf/ERK and mTOR signaling in human cancer cells. This compound significantly stimulated DNA synthesis, protein synthesis, and cellular proliferation of human 1-LN prostate cancer cells. By study of phosphorylation-dependent activation, we demonstrate that EPAC-mediated cellular effects require activation of the B-Raf/ERK and mTOR signaling cascades. RNAi directed against EPAC gene expression as well as inhibitors of ERK, PI 3-kinase, and mTOR were employed to further demonstrate the role of these pathways in regulating prostate cancer cell proliferation. These studies were then extended to several other human prostate cancer cell lines and melanoma cells with comparable results. We conclude that B-Raf/ERK and mTOR signaling play an essential role in cAMP-dependent, but PKA-independent, proliferation of cancer cells.
    Journal of Cellular Biochemistry 10/2009; 108(4):998-1011. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binding of activated α(2)-macroglobulin to GRP78 on the surface of human prostate cancer cells promotes proliferation by activating signaling cascades. Autoantibodies directed against the activated α(2)-macroglobulin binding site in the NH(2)-terminal domain of GRP78 are receptor agonists, and their presence in the sera of cancer patients is a poor prognostic indicator. We now show that antibodies directed against the GRP78 COOH-terminal domain inhibit [(3)H]thymidine uptake and cellular proliferation while promoting apoptosis as measured by DNA fragmentation, Annexin V assay, and clonogenic assay. These antibodies are receptor antagonists blocking autophosphorylation and activation of GRP78. Using 1-LN and DU145 prostate cancer cell lines and A375 melanoma cells, which express GRP78 on their cell surface, we show that antibodies directed against the COOH-terminal domain of GRP78 up-regulate the tumor suppressor protein p53. By contrast, antibody directed against the NH(2)-terminal domain of GRP78 shows negligible effects on p53 expression. PC-3 prostate cancer cells, which do not express GRP78 on their cell surface, are refractory to the effects of anti-GRP78 antibodies directed against either the COOH- or NH(2)-terminal domains. However, overexpression of GRP78 in PC-3 cells causes translocation of GRP78 to the cell surface and promotes apoptosis when these cells are treated with antibody directed against its COOH-terminal domain. Silencing GRP78 or p53 expression by RNA interference significantly blocked the increase in p53 induced by antibodies. Antibodies directed against the COOH-terminal domain may play a therapeutic role in cancer patients whose tumors trigger the production of autoantibodies directed against the NH(2)-terminal domain of GRP78.
    Molecular Cancer Therapeutics 06/2009; 8(5):1350-62. · 5.60 Impact Factor
  • U K Misra, F Wang, S V Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) bind to cell surface-associated GRP78 and induce proliferative and survival signaling in prostate cancer cells. As part of the cellular response to alpha(2)M*, GRP78 expression is itself upregulated. In response to other stimuli, the transcription factor TFII-I upregulates GRP78 by binding to its gene promoter. We have, therefore, studied the role of TFII-I in transcriptional upregulation of GRP78 in 1-LN human prostate cancer cells stimulated with alpha(2)M*. This treatment caused a two- to threefold increase in TFII-I and GRP78 synthesis from [(35)S]-labeled precursor amino acids. Synthesis of both TFII-I and GRP78 were significantly reduced by silencing TFII-I gene expression or pretreatment of cells with genistein or actinomycin D. Confocal microscopy was employed to demonstrate relocation of TFII-I to the nucleus. In alpha(2)M*-stimulated cells, moreover, TFII-I bound to the GRP78 promoter as determined by CHIP assay. We also demonstrate binding of TFII-I to the c-fos promoter, consistent with its role in upregulating c-fos gene expression. In non-lymphoid cells, phosphorylated c-Src is an activator of TFII-I. Ligation of GRP78 on 1-LN cells with alpha(2)M* was followed by tyrosine phosphorylation of c-Src as well as TFII-I. We conclude that alpha(2)M*-induced increase in GRP78 synthesis is caused by transcriptional upregulation of TFII-I which binds to the GRP78 promoter and thus potentiates its cell survival and antipoptotic functions in 1-LN prostate cancer cells.
    Journal of Cellular Biochemistry 01/2009; 106(3):381-9. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.
    Cellular Signalling 09/2008; 20(8):1459-70. · 4.47 Impact Factor
  • Uma Kant Misra, Salvatore Vincent Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that a fraction of newly expressed GRP78 is translocated to the cell surface in association with the co-chaperone MTJ-1. Proteinase and methylamine-activated alpha(2)M (alpha(2)M*) bind to cell surface-associated GRP78 activating phosphoinositide-specific phospholipase C coupled to a pertussis toxin-insensitive heterotrimeric G protein, generating IP(3)/calcium signaling. We have now studied the association of pertussis toxin-insensitive Galphaq11, with GRP78/MTJ-1 complexes in the plasma membranes of alpha(2)M*-stimulated macrophages. When GRP78 was immunoprecipitated from plasma membranes of macrophages stimulated with alpha(2)M*, Galphaq11, and MTJ-1 were co-precipitated. Likewise Galphaq11 and GRP78 co-immunoprecipitated with MTJ-1 while GRP78 and MTJ-1 co-immunoprecipitated with Galphaq11. Silencing GRP78 expression with GRP78 dsRNA or MTJ-1 with MTJ-1 dsRNA greatly reduced the levels of Galphaq11 co-precipitated with GRP78 or MTJ-1. In conclusion, we show here that plasma membrane-associated GRP78 is coupled to pertussis toxin-insensitive Galphaq11 and forms a ternary signaling complex with MTJ-1.
    Journal of Cellular Biochemistry 06/2008; 104(1):96-104. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epac1 is a cAMP-stimulated guanine exchange factor that activates Rap1. The protein product of the T cell leukemia 1 (TCL1) proto-oncogene binds to Akt enhancing its kinase activity. TCL1 and Epac promote cellular proliferation because of their activating effects on Akt. Employing macrophages, we have studied the mechanisms whereby these proteins function in the regulation of Akt kinase activity. Cells were treated with 8-CPT-2-O-Me-cAMP, a cAMP analog which acts selectively and specifically via Epac1. Epac1 co-immunoprecipitated with TCL1 in plasma membrane and nuclear fractions of 8-CPT-2-O-Me-cAMP-stimulated macrophages. Interaction of TCL1 and Epac1 was also observed in a [125I]GST-Epac1 pulldown assay. A two-threefold increase in Akt Thr-308 and Akt Ser-473 protein kinase activities and their phosphoprotein levels was observed in TCL1 immunoprecipitates of plasma membranes and nuclei of the treated cells. Elevated Akt Thr-308 protein kinase activity and its phosphoprotein levels were significantly reduced in TCL1 immunoprecipitates of plasma membranes of 8-CPT-2-O-Me-cAMP-treated cells where Epac1 gene expression was silenced. In contrast, Akt Ser-473 protein kinase activity and its phosphoprotein levels were reduced only in plasma membranes. Our studies suggest that a ternary complex of TCL1, Epac1, and Akt forms in activated macrophages both promoting Akt activation and regulating intracellular distribution of Akt.
    Cellular Signalling 02/2008; 20(1):130-8. · 4.47 Impact Factor
  • Uma Kant Misra, Salvatore Vincent Pizzo
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we reported that silencing CREB gene expression by RNAi significantly attenuates forskolin-induced activation of Akt1. We now provide evidence that forskolin-treatment causes transcriptional and translational upregulation of Akt1 in macrophages. Akt synthesis was demonstrated by [(14)C]leucine or [(35)S] incorporation into newly synthesized Akt1 protein. Akt protein levels increased by approximately 1.5-fold after only a 5 min exposure of macrophages to forskolin. Akt1 levels thereafter rapidly returned to basal values (t(1/2) approximately 15 min). Maximal upregulation of Akt1 occurred in cells treated with 10 microM forskolin. Forskolin-dependent Akt1 synthesis was abolished by pretreating the cells with CREB-directed dsRNA as demonstrated at both the message and protein level, as well as by determining the synthesis of [(35)S]-labeled Akt1 protein. The PKA inhibitor H-89, greatly attenuated forskolin-induced Akt1 synthesis. Transcriptional and translational inhibitors also greatly reduced Akt1 synthesis in forskolin-stimulated [(14)C]leucine-labeled macrophages. Using a chromatin immunoprecipitation assay, we demonstrate that CREB binds to a CRE binding domain of the Akt1 gene promoter. In conclusion, we show here for the first time transcriptional upregulation of Akt1 by CREB, based upon Akt1 protein synthesis and its modulation by transitional and translational inhibitors in forskolin-stimulated cells, Akt1 protein. and mRNA levels upon silencing CREB gene expression, and binding of CREB to the Akt1 gene promoter.
    Journal of Cellular Biochemistry 04/2007; 100(4):1022-33. · 3.06 Impact Factor