Aimee L Edinger

University of California, Irvine, Irvine, CA, United States

Are you Aimee L Edinger?

Claim your profile

Publications (49)348.23 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: FTY720 functions as an immunosuppressant due to its effect on sphingosine-1-phosphate receptors. At doses well above those needed for immunosuppression, FTY720 also has anti-neoplastic actions. Our published work suggests that at least some of FTY720's anti-cancer activity is independent of its effects on S1P receptors and due instead to its ability to induce nutrient transporter down-regulation. Compounds that trigger nutrient transporter loss but lack FTY720's S1P receptor-related, dose-limiting toxicity have the potential to be effective and selective anti-tumor agents. In this study, a series of enantiomerically pure and stereochemically diverse O-substituted benzyl ethers of pyrrolidines was generated and tested for the ability to kill human leukemia cells. The stereochemistry of the hydroxymethyl was found to be a key determinant of compound activity. Moreover, phosphorylation of this group was not required for anti-leukemic activity.
    ACS Medicinal Chemistry Letters 10/2013; 4(10). · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2(-/-) MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2(-/-) MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2(-/-) MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.Oncogene advance online publication, 22 April 2013; doi:10.1038/onc.2013.139.
    Oncogene 04/2013; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mouse models lacking proteins essential for autophagosome formation have demonstrated that autophagy plays a critical role in T cell development and activation. To better understand the function of autophagy in quiescent and activated lymphocytes, we have generated a mouse deficient in rab7 selectively in T cells and compared the effects of blocking autophagy at an early (atg5 (-/-) ) or late (rab7 (-/-) ) stage on T cell biology. rab7 (-/-) murine embryonic fibroblasts (MEFs) and T cells generated from these mice exhibit a profound block in autophagosome degradation and are as sensitive as atg5 (-/-) cells to extracellular nutrient limitation. Rab7 (flox/flox) CD4-Cre (+) mice lacking the RAB7 protein in both CD4 and CD8 T cells had reduced numbers of peripheral T cells, but this defect was not as severe as in Atg5 (flox/flox) CD4-Cre (+) mice despite efficient rab7 deletion and inhibition of autophagic flux. This difference may stem from the reduced ROS generation and enhanced survival of rab7 (-/-) T cells compared with wild-type and atg5 (-/-) T cells in the absence of cytokine stimulation. rab7 (-/-) and atg5 (-/-) T cells exhibited similar defects in proliferation both following antibody-mediated T cell receptor (TCR) cross-linking and using a more physiologic activation protocol, allogeneic stimulation. Interestingly, autophagy was not required to provide building blocks for the upregulation of nutrient transporter proteins immediately following activation. Together, these studies suggest that autophagosome degradation is required for the survival of activated T cells, but that loss of rab7 is better tolerated in naïve T cells than the loss of atg5.
    Autophagy 04/2013; 9(7). · 12.04 Impact Factor
  • Alison N McCracken, Aimee L Edinger
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly proliferative cells, including cancer cells, require a constant supply of molecular building blocks to support their growth. To acquire substrates such as glucose and amino acids from the extracellular space, dividing cells rely on transporter proteins in the plasma membrane. Numerous studies link transcriptional and post-translational control of nutrient transporter expression with proliferation, highlighting the importance of nutrient transporters in both physiologic and pathologic growth. Here we review recent work that spotlights the crucial role of nutrient transporters in cell growth and proliferation, discuss post-translational mechanisms for coordinating expression of different transporters, and consider the therapeutic potential of targeting these proteins in cancer and other diseases characterized by inappropriate cell division.
    Trends in Endocrinology and Metabolism 02/2013; · 8.90 Impact Factor
  • Source
    Autophagy 04/2012; 8(4):1-100. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process);5,6 thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4). · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 12.04 Impact Factor
  • Source
    Autophagy 04/2012; 4454(8):445-544. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445. · 12.04 Impact Factor
  • Source
    Autophagy 01/2012; 4454(8):445-544. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method is presented for the measurement of ceramide species in biological fluids using flow injection tandem mass spectrometry. Ceramides are important signaling compounds in a number of cell:cell interactions including apoptosis and neurodegeneration. Because of the large number of potential fatty acid constituent moieties on ceramide molecules, a method which accurately distinguishes different chain-length species was required. The present method does not require HPLC separation and is designed to be applicable to high throughput analysis required for clinical studies. We provide a reference range for all measurable ceramide species in normal human plasma and an example of the utility of the assay in providing biomarkers in an in vitro apoptotic cell death study using murine hematopoietic cells treated with daunorubicin.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 11/2011; 883-884:136-40. · 2.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells are hypersensitive to nutrient limitation because oncogenes constitutively drive glycolytic and TCA (tricarboxylic acid) cycle intermediates into biosynthetic pathways. As the anaplerotic reactions that replace these intermediates are fueled by imported nutrients, the cancer cell's ability to generate ATP becomes compromised under nutrient-limiting conditions. In addition, most cancer cells have defects in autophagy, the catabolic process that provides nutrients from internal sources when external nutrients are unavailable. Normal cells, in contrast, can adapt to the nutrient stress that kills cancer cells by becoming quiescent and catabolic. In the present study we show that FTY720, a water-soluble sphingolipid drug that is effective in many animal cancer models, selectively starves cancer cells to death by down-regulating nutrient transporter proteins. Consistent with a bioenergetic mechanism of action, FTY720 induced homoeostatic autophagy. Cells were protected from FTY720 by cell-permeant nutrients or by reducing nutrient demand, but blocking apoptosis was ineffective. Importantly, AAL-149, a FTY720 analogue that lacks FTY720's dose-limiting toxicity, also triggered transporter loss and killed patient-derived leukaemias while sparing cells isolated from normal donors. As they target the metabolic profile of cancer cells rather than specific oncogenic mutations, FTY720 analogues such as AAL-149 should be effective against many different tumour types, particularly in combination with drugs that inhibit autophagy.
    Biochemical Journal 07/2011; 439(2):299-311. · 4.65 Impact Factor
  • Source
    Aimee L Edinger
    Cancer biology & therapy 12/2010; 10(12):1262-5. · 3.29 Impact Factor
  • Source
    Craig M Walsh, Aimee L Edinger
    [Show abstract] [Hide abstract]
    ABSTRACT: Intense research efforts over the last two decades have focused on establishing the significance of apoptotic signaling in adaptive immunity. Without doubt, caspase-dependent apoptosis plays vital roles in many immune processes, including lymphocyte development, positive and negative selection, homeostasis, and self-tolerance. Cell biologists have developed new insights into cell death, establishing that other modes of cell death exist, such as programmed necrosis and type II/autophagic cell death. Additionally, immunologists have identified a number of immunological processes that are highly dependent upon cellular autophagy, including antigen presentation, lymphocyte development and function, pathogen recognition and destruction, and inflammatory regulation. In this review, we provide detailed mechanistic descriptions of cellular autophagy and programmed necrosis induced in response to death receptor ligation, including methods to identify them, and compare and contrast these processes with apoptosis. The crosstalk between these three processes is emphasized as newly formulated evidence suggests that this interplay is vital for efficient T-cell clonal expansion. This new evidence indicates that in addition to apoptosis, autophagy and programmed necrosis play significant roles in the termination of T-cell-dependent immune responses.
    Immunological Reviews 07/2010; 236:95-109. · 12.16 Impact Factor
  • Eigen R Peralta, Brent C Martin, Aimee L Edinger
    [Show abstract] [Hide abstract]
    ABSTRACT: The small GTPase Rab7 promotes fusion events between late endosomes and lysosomes. Rab7 activity is regulated by extrinsic signals, most likely via effects on its guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP). Based on their homology to the yeast proteins that regulate the Ypt7 GTP binding state, TBC1D15, and mammalian Vps39 (mVps39) have been suggested to function as the Rab7 GAP and GEF, respectively. We developed an effector pull-down assay to test this model. TBC1D15 functioned as a Rab7 GAP in cells, reducing Rab7 binding to its effector protein RILP, fragmenting the lysosome, and conferring resistance to growth factor withdrawal-induced cell death. In a cellular context, TBC1D15 GAP activity was selective for Rab7. TBC1D15 overexpression did not inhibit transferrin internalization or recycling, Rab7-independent processes that require Rab4, Rab5, and Rab11 activation. TBC1D15 was thus renamed Rab7-GAP. Contrary to expectations for a Rab7 GEF, mVps39 induced lysosomal clustering without increasing Rab7 GTP binding. Moreover, a dominant-negative mVps39 mutant fragmented the lysosome and promoted growth factor independence without decreasing Rab7-GTP levels. These findings suggest that a protein other than mVps39 serves as the Rab7 GEF. In summary, although only TBC1D15/Rab7-GAP altered Rab7-GTP levels, both Rab7-GAP and mVps39 regulate lysosomal morphology and play a role in maintaining growth factor dependence.
    Journal of Biological Chemistry 04/2010; 285(22):16814-21. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The BCL-2 family members BAK and BAX are required for apoptosis and trigger mitochondrial outer membrane permeabilization (MOMP). Here we identify a MOMP-independent function of BAK as a required factor for long-chain ceramide production in response to pro-apoptotic stress. UV-C irradiation of wild-type (WT) cells increased long-chain ceramides; blocking ceramide generation prevented caspase activation and cell death, demonstrating that long-chain ceramides play a key role in UV-C-induced apoptosis. In contrast, UV-C irradiation did not increase long-chain ceramides in BAK and BAX double knock-out cells. Notably, this was not specific to the cell type (baby mouse kidney cells, hematopoietic) nor the apoptotic stimulus employed (UV-C, cisplatin, and growth factor withdrawal). Importantly, long-chain ceramide generation was dependent on the presence of BAK, but not BAX. However, ceramide generation was independent of the known downstream actions of BAK in apoptosis (MOMP or caspase activation), suggesting a novel role for BAK in apoptosis. Finally, enzymatic assays identified ceramide synthase as the mechanism by which BAK regulates ceramide metabolism. There was no change in CerS expression at the message or protein level, indicating regulation at the post-translational level. Moreover, CerS activity in BAK KO microsomes can be reactivated upon addition of BAK-containing microsomes. The data presented indicate that ceramide-induced apoptosis is dependent upon BAK and identify a novel role for BAK during apoptosis. By establishing a unique role for BAK in long-chain ceramide metabolism, these studies further demonstrate that the seemingly redundant proteins BAK and BAX have distinct mechanisms of action during apoptosis induction.
    Journal of Biological Chemistry 02/2010; 285(16):11818-26. · 4.65 Impact Factor
  • Source
    Eigen R Peralta, Aimee L Edinger
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is triggered by ceramide, a sphingolipid that regulates diverse cellular processes including survival, differentiation and senescence. Both ceramide and autophagy play important, but incompletely understood, roles in type 2 diabetes and cancer. We reasoned that defining the connection between ceramide and autophagy might provide an important insight into these highly prevalent diseases. Our recently published work demonstrates that ceramide-induced autophagy is a homeostatic response to starvation caused by nutrient transporter downregulation. Preventing nutrient transporter loss or supplementation with transporter-independent nutrients protects cells from ceramide-induced death and delays the onset of autophagy. Thus, we propose a model where ceramide kills cells by inducing acute and severe intracellular nutrient limitation. Consistent with this idea, AMPK-deficient cells that are less able to deal with bioenergetic stress are also more sensitive to ceramide than wild-type cells. Our observation that gradually adapting cells to tolerate low levels of extracellular nutrients confers striking resistance to ceramide toxicity further supports this model. These results highlight the value of measuring nutrient transporter expression in cells undergoing protective autophagy. In addition, this novel mechanism for ceramide-induced cell death suggests new approaches to studying and treating multiple human diseases.
    Autophagy 05/2009; 5(3):407-9. · 12.04 Impact Factor
  • Source
    Garret G Guenther, Aimee L Edinger
    [Show abstract] [Hide abstract]
    ABSTRACT: Ceramide generation is increased by a broad array of signals. In general, ceramide limits cell survival and proliferation and promotes differentiation and senescence. Despite its role in the pathogenesis of multiple human diseases, ceramide's mechanism of action remains poorly defined. Understanding how this sphingolipid modulates cell physiology is therefore an important goal. Building on prior observations that ceramide induces autophagy, we demonstrate that ceramide kills cells by inducing severe bioenergetic stress secondary to nutrient transporter downregulation. In support of this model, maintaining nutrient access blocks ceramide-induced autophagy and cell death. This bioenergetic mechanism of action may explain the increased sensitivity of cancer cells to ceramide. Starvation induces quiescence in normal cells. Tumor cells, in contrast, carry oncogenic mutations that block the switch to catabolism and prevent a reduction in metabolic demand leading to a bioenergetic crisis when nutrients become scarce. We propose that the non-lethal effects of ceramide might also stem from ceramide-induced starvation. While severe nutrient stress kills cells, mild nutrient limitation slows proliferation and may contribute to the induction of senescence. In sum, our new model for ceramide action suggests that regulated nutrient transporter expression may play a previously unappreciated role in cancer and other diseases where ceramide metabolism is altered.
    Cell cycle (Georgetown, Tex.) 05/2009; 8(8):1122-6. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rab7 GTPase promotes membrane fusion reactions between late endosomes and lysosomes. In previous studies, we demonstrated that Rab7 inactivation blocks growth factor withdrawal-induced cell death. These results led us to hypothesize that growth factor withdrawal activates Rab7. Here, we show that growth factor deprivation increased both the fraction of Rab7 that was associated with cellular membranes and the percentage of Rab7 bound to guanosine triphosphate (GTP). Moreover, expressing a constitutively GTP-bound mutant of Rab7, Rab7-Q67L, was sufficient to trigger cell death even in the presence of growth factors. This activated Rab7 mutant was also able to reverse the growth factor-independent cell survival conferred by protein kinase C (PKC) delta inhibition. PKCdelta is one of the most highly induced proteins after growth factor withdrawal and contributes to the induction of apoptosis. To evaluate whether PKCdelta regulates Rab7, we first examined lysosomal morphology in cells with reduced PKCdelta activity. Consistent with a potential role as a Rab7 activator, blocking PKCdelta function caused profound lysosomal fragmentation comparable to that observed when Rab7 was directly inhibited. Interestingly, PKCdelta inhibition fragmented the lysosome without decreasing Rab7-GTP levels. Taken together, these results suggest that Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis and that Rab7-dependent fusion reactions may be targeted by signaling pathways that limit growth factor-independent cell survival.
    Molecular biology of the cell 05/2009; 20(12):2831-40. · 5.98 Impact Factor

Publication Stats

3k Citations
348.23 Total Impact Points

Institutions

  • 2007–2013
    • University of California, Irvine
      • • Department of Developmental and Cell Biology
      • • Department of Molecular Biology and Biochemistry
      Irvine, CA, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 1997–2005
    • University of Pennsylvania
      • • Department of Pathology and Laboratory Medicine
      • • Department of Cancer Biology - CBIO
      Philadelphia, PA, United States
  • 2002
    • The Scripps Research Institute
      La Jolla, California, United States
  • 1999
    • Uniformed Services University of the Health Sciences
      • Department of Microbiology & Immunology
      Bethesda, MD, United States