Traci M Tanaka Hall

University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Are you Traci M Tanaka Hall?

Claim your profile

Publications (23)218.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop-binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA.
    Proceedings of the National Academy of Sciences of the United States of America. 07/2014;
  • Source
    Yang Wang, Zefeng Wang, Traci M. Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Pumilio/fem-3 mRNA binding factor proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. We summarize the advances made with respect to developing RNA regulatory tools, as well as opportunities for the future.
    FEBS Journal 08/2013; 280(16). · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites. Despite this conserved "two-handed" pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.
    Proceedings of the National Academy of Sciences 03/2012; 109(16):6054-9. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.
    Journal of Biological Chemistry 12/2011; 287(9):6949-57. · 4.65 Impact Factor
  • Source
    Huanchen Wang, J R Falck, Traci M Tanaka Hall, Stephen B Shears
    [Show abstract] [Hide abstract]
    ABSTRACT: Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domain of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF(3)(-) transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.
    Nature Chemical Biology 11/2011; 8(1):111-6. · 12.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.
    Journal of Biological Chemistry 06/2011; 286(30):26732-42. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to "target" versus "off-target" interactions, and thus be an important consideration in the design of proteins with new specificities.
    RNA 03/2011; 17(4):718-27. · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.
    Molecular cell 03/2011; 42(2):172-84. · 14.61 Impact Factor
  • Source
    Gang Lu, Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Human PUMILIO1 (PUM1) and PUMILIO2 (PUM2) are members of the PUMILIO/FBF (PUF) family that regulate specific target mRNAs posttranscriptionally. Recent studies have identified mRNA targets associated with human PUM1 and PUM2. Here, we explore the structural basis of natural target RNA recognition by human PUF proteins through crystal structures of the RNA-binding domains of PUM1 and PUM2 in complex with four cognate RNA sequences, including sequences from p38α and erk2 MAP kinase mRNAs. We observe three distinct modes of RNA binding around the fifth RNA base, two of which are different from the prototypical 1 repeat:1 RNA base binding mode previously identified with model RNA sequences. RNA-binding affinities of PUM1 and PUM2 are not affected dramatically by the different binding modes in vitro. However, these modes of binding create structurally variable recognition surfaces that suggest a mechanism in vivo for recruitment of downstream effector proteins defined by the PUF:RNA complex.
    Structure 03/2011; 19(3):361-7. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drosha is a nuclear RNase III enzyme that initiates processing of regulatory microRNA. Together with partner protein DiGeorge syndrome critical region 8 (DGCR8), it forms the Microprocessor complex, which cleaves precursor transcripts called primary microRNA to produce hairpin precursor microRNA. In addition to two RNase III catalytic domains, Drosha contains a C-terminal double-stranded RNA-binding domain (dsRBD). To gain insight into the function of this domain, we determined the nuclear magnetic resonance (NMR) solution structure. We report here the solution structure of the dsRBD from Drosha (Drosha-dsRBD). The alphabetabetabetaalpha fold is similar to other dsRBD structures. A unique extended loop distinguishes this domain from other dsRBDs of known structure. Despite uncertainties about RNA-binding properties of the Drosha-dsRBD, its structure suggests it retains RNA-binding features. We propose that this domain may contribute to substrate recognition in the Drosha-DGCR8 Microprocessor complex.
    Silence. 01/2010; 1(1):2.
  • Source
    Yeming Wang, Laura Opperman, Marvin Wickens, Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.
    Proceedings of the National Academy of Sciences 11/2009; 106(48):20186-91. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity. To do so, we explore the crystal structures of Puf3p complexes with 2 cognate RNAs. The key determinant of Puf3p specificity is an unusual interaction between a distinctive pocket of the protein with an RNA base outside the "core" PUF-binding site. That interaction dramatically affects binding affinity in vitro and is required for regulation in vivo. The Puf3p structures, combined with those of Puf4p in the same organism, illuminate the structural basis of natural PUF-RNA networks. Yeast Puf3p binds its own RNAs because they possess a -2C and is excluded from those of Puf4p which contain an additional nucleotide in the core-binding site.
    Proceedings of the National Academy of Sciences 11/2009; 106(48):20192-7. · 9.81 Impact Factor
  • Source
    Yang Wang, Cheom-Gil Cheong, Traci M Tanaka Hall, Zefeng Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineered artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alternative splicing in selected targets, to examine the activity of effector domains from natural splicing factors and to modulate splicing of an endogenous human gene, Bcl-X, an anticancer target. The designer factor targeted to Bcl-X increased the amount of pro-apoptotic Bcl-xS splice isoform, thus promoting apoptosis and increasing chemosensitivity of cancer cells to common antitumor drugs. Our approach permitted the creation of artificial factors to target virtually any pre-mRNA, providing a strategy to study splicing regulation and to manipulate disease-associated splicing events.
    Nature Methods 10/2009; 6(11):825-30. · 23.57 Impact Factor
  • Source
    Gang Lu, Stephen J Dolgner, Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: PUF proteins are RNA-binding proteins named for founding members PUMILIO and fem-3 binding factor (FBF). Together these proteins represent the range of known RNA recognition properties. PUMILIO is a prototypical PUF protein whose RNA sequence specificity is simple, elegant, and predictable. FBF displays differences in RNA recognition that represent divergence from the prototype. Here we review recent studies that examine the engineering of sequence specificity of PUF proteins and its applications as well as studies that increase our understanding of the natural diversity of RNA recognition by this family of proteins.
    Current Opinion in Structural Biology 02/2009; 19(1):110-5. · 8.74 Impact Factor
  • Source
    Matthew T Miller, Joshua J Higgin, Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight alpha-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modest adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.
    Nature Structural & Molecular Biology 05/2008; 15(4):397-402. · 11.90 Impact Factor
  • Source
    Cheom-Gil Cheong, Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Puf proteins bind RNA sequence specifically and regulate translation and stability of target mRNAs. A "code" for RNA recognition has been deduced from crystal structures of the Puf protein, human Pumilio1, where each of eight repeats binds an RNA base via a combination of three side chains at conserved positions. Here, we report the creation of seven soluble mutant proteins with predictably altered sequence specificity, including one that binds tightly to adenosine-uracil-rich element RNA. These data show that Pumilio1 can be used as a scaffold to engineer RNA-binding proteins with designed sequence specificity.
    Proceedings of the National Academy of Sciences 10/2006; 103(37):13635-9. · 9.81 Impact Factor
  • Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Argonaute (Ago) family proteins are multidomain proteins expressed in prokaryotic and eukaryotic organisms. In eukaryotes, Ago proteins are most well known for their roles in RNA silencing. In prokaryotes, the functions of Ago proteins are unknown, but based on their similarity to eukaryotic Ago proteins, they could be involved in nucleic acid-directed regulatory pathways related to RNA silencing. Recent structural and biochemical studies have shed new light on the function of this family of proteins. These studies reveal how these proteins recognize and cleave RNA and suggest a function for prokaryotic family members.
    Structure 11/2005; 13(10):1403-8. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups. Biochemical experiments show that the maturase binds a peripheral RNA domain 50 A from the splicing active site, exemplifying long-distance structural communication in a ribonucleoprotein complex. The bI3 maturase nucleic acid recognition saddle interacts at the RNA minor groove; thus, evolution from DNA to RNA function has been mediated by a switch from major to minor groove interaction.
    Nature Structural & Molecular Biology 10/2005; 12(9):779-87. · 11.90 Impact Factor
  • Traci M Tanaka Hall
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc finger proteins are generally thought of as DNA-binding transcription factors; however, certain classes of zinc finger proteins, including the common C(2)H(2) zinc fingers, function as RNA-binding proteins. Recent structural studies of the C(2)H(2) zinc fingers of transcription factor IIIA (TFIIIA) and the CCCH zinc fingers of Tis11d in complex with their RNA targets have revealed new modes of zinc finger interaction with nucleic acid. The three C(2)H(2) zinc fingers of TFIIIA use two modes of RNA recognition that differ from the classical mode of DNA recognition, whereas the CCCH zinc fingers of Tis11d recognize specific AU-rich sequences through backbone atom interaction with the Watson-Crick edges of the adenine and uracil bases.
    Current Opinion in Structural Biology 07/2005; 15(3):367-73. · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Puf proteins are developmental regulators that control mRNA stability and translation by binding sequences in the 3' untranslated regions of their target mRNAs. We have determined the structure of the RNA binding domain of the human Puf protein, Pumilio1, bound to a high-affinity RNA ligand. The RNA binds the concave surface of the molecule, where each of the protein's eight repeats makes contacts with a different RNA base via three amino acid side chains at conserved positions. We have mutated these three side chains in one repeat, thereby altering the sequence specificity of Pumilio1. Thus, the high affinity and specificity of the PUM-HD for RNA is achieved using multiple copies of a simple repeated motif.
    Cell 09/2002; 110(4):501-12. · 31.96 Impact Factor

Publication Stats

988 Citations
218.24 Total Impact Points

Institutions

  • 2013
    • University of North Carolina at Chapel Hill
      • Department of Pharmacology
      Chapel Hill, NC, United States
  • 2009–2012
    • National Institute of Environmental Health Sciences
      • Laboratory of Structural Biology (LSB)
      Durham, NC, United States
  • 2001–2011
    • National Institutes of Health
      • Structural Biophysics Laboratory
      Bethesda, MD, United States