Claire R Weston

Howard Hughes Medical Institute, Ashburn, Virginia, United States

Are you Claire R Weston?

Claim your profile

Publications (12)120.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cJun NH2-terminal kinase (JNK) signal transduction pathway has been implicated in mammary carcinogenesis. To test the role of JNK, we examined the effect of ablation of the Jnk1 and Jnk2 genes in a Trp53-dependent model of breast cancer using BALB/c mice. We detected no defects in mammary gland development in virgin mice or during lactation and involution in control studies of Jnk1(-/-) and Jnk2(-/-) mice. In a Trp53(-/+) genetic background, mammary carcinomas were detected in 43% of control mice, 70% of Jnk1(-/-) mice, and 53% of Jnk2(-/-) mice. These data indicate that JNK1 and JNK2 are not essential for mammary carcinoma development in the Trp53(-/+) BALB/c model of breast cancer. In contrast, this analysis suggests that JNK may partially contribute to tumor suppression. This conclusion is consistent with the finding that tumor-free survival of JNK-deficient Trp53(-/+) mice was significantly reduced compared with control Trp53(-/+) mice. We conclude that JNK1 and JNK2 can act as suppressors of mammary tumor development.
    PLoS ONE 08/2010; 5(8):e12469. DOI:10.1371/journal.pone.0012469 · 3.53 Impact Factor
  • Source
    Claire R Weston, Roger J Davis
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun NH(2)-terminal kinases (JNKs) are an evolutionarily conserved sub-group of mitogen-activated protein (MAP) kinases. Recent studies have improved our understanding of the physiological function of the JNK pathway. Roles of novel molecules that participate in the JNK pathway have been defined and new insight into the role of JNK in survival signaling, cell death, cancer and diabetes has been achieved.
    Current Opinion in Cell Biology 05/2007; 19(2):142-9. DOI:10.1016/j.ceb.2007.02.001 · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental insults such as microbial pathogens can contribute to the activation of autoreactive T cells, leading to inflammation of target organs and, ultimately, autoimmune disease. Various infections have been linked to multiple sclerosis and its animal counterpart, autoimmune encephalomyelitis. The molecular process by which innate immunity triggers autoreactivity is not currently understood. By using a mouse model of multiple sclerosis, we found that the genetic loss of the MAPK, c-Jun N-terminal kinase 1 (JNK1), enhances IL-10 production, rendering innate myeloid cells unresponsive to certain microbes and less capable of generating IL-17-producing, encephalitogenic T cells. Moreover, JNK1-deficient central nervous system myeloid cells are unable to respond to effector T cell inflammatory cytokines, preventing further progression to neuroinflammation. Thus, we have identified the JNK1 signal transduction pathway in myeloid cells to be a critical component of a regulatory circuit mediating inflammatory responses in autoimmune disease. Our findings provide further insights into the pivotal MAPK-regulated network of innate and adaptive cytokines in the progression to autoimmunity.
    Proceedings of the National Academy of Sciences 10/2006; 103(36):13451-6. DOI:10.1073/pnas.0601155103 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conditional protein kinase DeltaMEKK3:ER* allows activation of the mitogen-activated and stress-activated protein kinases (MAPKs and SAPKs) without imposing a primary cellular stress or damage. Such separation of stress from stress-induced signalling is particularly important in the analysis of apoptosis. Activation of DeltaMEKK3:ER* in cycling CCl39 cells caused a rapid stimulation of the ERK1/2, JNK and p38 pathways but resulted in a slow, delayed apoptotic response. Paradoxically, activation of the same pathways inhibited the rapid expression of Bim(EL) and apoptosis following withdrawal of serum. Inhibition of the ERK1/2 pathway prevented the down-regulation of Bim(EL) but caused only a partial reversion of the cyto-protective effect of DeltaMEKK3:ER*. In contrast, inhibition of p38 had no effect, raising the possibility that activation of JNK might also exert a protective effect. To test this we used CCl39 cells expressing DeltaMEKK1:ER* which activates JNK but not ERK1/2, p38, PKB or IkappaB kinase. Activation of DeltaMEKK1:ER* inhibited serum withdrawal-induced conformational changes in Bax and apoptosis. These results suggest that in the absence of any overt cellular damage or chemical stress activation of JNK can act independently of the ERK1/2 or PKB pathways to inhibit serum withdrawal-induced cell death.
    Cellular Signalling 12/2005; 17(11):1412-22. DOI:10.1016/j.cellsig.2005.02.006 · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases is activated in response to a wide array of cellular stresses and proinflammatory cytokines. Roles for JNK in the developing nervous system and T-cell-mediated immunity have been established by detailed studies of mice with compound mutations in the Jnk genes. However, little is known concerning the roles of JNK in other mammalian tissues. Mice lacking both of the ubiquitously expressed isoforms (JNK1 and -2) die during midgestation with neural tube closure defects and brain abnormalities. Here we show that JNK-deficient mice exhibit delayed epithelial development in the epidermis, intestines, and lungs. In addition, JNK-deficient mice exhibit an eyelid closure defect associated with markedly reduced epidermal growth factor (EGF) receptor function, and loss of expression of the ligand EGF. We further demonstrate that adult mice lacking either JNK1 or -2 display striking differences in epidermal proliferation and differentiation, indicative of distinct roles for these kinases in the skin. We conclude that JNK is necessary for epithelial morphogenesis and is an essential regulator of signal transduction by the EGF receptor in the epidermis.
    Proceedings of the National Academy of Sciences 10/2004; 101(39):14114-9. DOI:10.1073/pnas.0406061101 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the mechanisms by which mitogen- and stress-activated protein kinases regulate cell cycle re-entry, we have used a panel of conditional kinases that stimulate defined MAPK or SAPK cascades. Activation of DeltaMEKK3:ER* during serum restimulation of quiescent cells causes a strong activation of JNK1 and p38alpha but only a modest potentiation of serum-stimulated ERK1/2 activity. In CCl39 cells this promoted a sustained G1 arrest that correlated with decreased expression of cyclin D1 and Cdc25A, increased expression of p21CIP1 and inhibition of CDK2 activity. In Rat-1 cells, in which p21(CIP1) expression is silenced by methylation, DeltaMEKK3:ER* activation caused only a transient delay in the S phase entry rather than a sustained G1 arrest. Furthermore, p21CIP1-/- 3T3 cells were defective for the DeltaMEKK3:ER*-induced G1 cell cycle arrest compared to their wild-type counterparts. These results suggest that activated DeltaMEKK3:ER* inhibits the G1 --> S progression by two kinetically distinct mechanisms, with expression of p21CIP1 being required to ensure a sustained G1 cell cycle arrest. The ERK1/2 and p38alphabeta pathways cooperated to induce p21CIP1 expression and inhibition of p38alphabeta caused a partial reversal of the cell cycle arrest. In contrast, selective activation of ERK1/2 by DeltaRaf-1:ER* did not inhibit serum stimulated cell cycle re-entry. Finally, selective activation of JNK by DeltaMEKK1:ER* failed to inhibit cell cycle re-entry, even in cells that retained wild-type p53, arguing against a major role for JNK alone in antagonizing the G1 --> S transition.
    Oncogene 04/2004; 23(19):3284-95. DOI:10.1038/sj.onc.1207467 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The murine JNK-interacting protein 3 (JIP3) protein (also known as JSAP1) is expressed exclusively in neurons and has been identified as a scaffold protein for the c-Jun NH2-terminal kinase (JNK) signaling pathway and as an adapter protein for cargo transport by the microtubule motor protein kinesin. To investigate the physiological function of JIP3, we examined the effect of Jip3 gene disruption in mice. The Jip3-/- mice were unable to breathe and died shortly after birth. Microscopic analysis demonstrated that Jip3 gene disruption causes severe defects in the morphogenesis of the telencephalon. Jip3-/- mice lack the telencephalic commissure, a major connection between the left and right hemispheres of the brain. The central nervous system abnormalities of Jip3-/- mice may be accounted for in part by a reduction in signal transduction by RhoA and its effector ROCK.
    Proceedings of the National Academy of Sciences 09/2003; 100(17):9843-8. DOI:10.1073/pnas.1733944100 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both the ERK and phosphatidylinositol 3'-kinase (PI3K) signaling pathways can protect cells from apoptosis following withdrawal of survival factors. We have previously shown that the ERK1/2 pathway acts independently of PI3K to block expression of the BH3-only protein, BimEL, and prevent serum withdrawal-induced cell death, although the precise mechanism by which ERK reduced BimEL levels was unclear. By comparing Bim mRNA and Bim protein, expression we now show that the rapid expression of BimEL following serum withdrawal cannot be accounted for simply by increases in mRNA following inhibition of PI3K. In cells maintained in serum BimEL is a phosphoprotein. We show that activation of the ERK1/2 pathway is both necessary and sufficient to promote BimEL phosphorylation and that this leads to a substantial increase in turnover of the BimEL protein. ERK1/2-dependent degradation of BimEL proceeds via the proteasome pathway because it is blocked by proteasome inhibitors and is defective at the restrictive temperature in cells with a temperature-sensitive mutation in the E1 component of the ubiquitin-conjugating system. Finally, co-transfection of BimEL and FLAG-ubiquitin causes the accumulation of polyubiquitinated forms of Bim, and this requires the ERK1/2 pathway. Our findings provide new insights into the regulation of Bim and the role of the ERK pathway in cell survival.
    Journal of Biological Chemistry 06/2003; 278(21):18811-6. DOI:10.1074/jbc.M301010200 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases is stimulated in response to a wide array of cellular stresses and proinflammatory cytokines. Mice lacking individual members of the Jnk family (Jnk1, Jnk2, and Jnk3) are viable and survive without overt structural abnormalities. Here we show that mice with a compound deficiency in Jnk expression can survive to birth, but fail to close the optic fissure (retinal coloboma). We demonstrate that JNK initiates a cytokine cascade of bone morphogenetic protein-4 (BMP4) and sonic hedgehog (Shh) that induces the expression of the paired-like homeobox transcription factor Pax2 and closure of the optic fissure. Interestingly, the role of JNK to regulate BMP4 expression during optic fissure closure is conserved in Drosophila during dorsal closure, a related morphogenetic process that requires JNK-regulated expression of the BMP4 ortholog Decapentaplegic (Dpp).
    Genes & Development 06/2003; 17(10):1271-80. DOI:10.1101/gad.1087303 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CC139 fibroblasts are one of several model systems in which the Raf --> MEK --> ERK1/2 pathway can inhibit apoptosis independently of the PI3K pathway; however, the precise mechanism for this protective effect is not known. Serum withdrawal from CC139 fibroblasts resulted in the rapid onset of apoptosis, which was prevented by actinomycin D or cycloheximide. Serum withdrawal promoted the rapid, de novo accumulation of Bim(EL), a proapoptotic 'BH3-only' member of the Bcl-2 protein family. Bim(EL) expression was an early event, occurring several hours prior to caspase activation. In contrast to studies in neurons, activation of the JNK --> c-Jun pathway was neither necessary nor sufficient to induce Bim(EL) expression. Selective inhibition of either the ERK pathway (with U0126) or the PI3K pathway (with LY294002) caused an increase in the expression of Bim(EL). Furthermore, selective activation of the ERK1/2 pathway by deltaRaf-1:ER* substantially reduced Bim(EL) expression, abolished conformational changes in Bax and blocked the appearance of apoptotic cells. The ability of deltaRaf-1:ER* to repress Bim(EL) expression required the ERK pathway but was independent of the PI3K --> PDK --> PKB pathway. Thus, serum withdrawal-induced expression of Bim(EL) occurs independently of the JNK --> c-Jun pathway and can be repressed by the ERK pathway independently of the PI3K pathway. This may contribute to Raf- and Ras-induced cell survival at low serum concentrations.
    Oncogene 03/2003; 22(9):1281-93. DOI:10.1038/sj.onc.1206261 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whilst many studies have examined the role of the MAP Kinases in regulating the G1-->S transition, much less is known about the function of these pathways in regulating other cell cycle transitions. Stimulation of the conditional mutant Delta MEKK3:ER* in asynchronous hamster (CCl39) and rat (Rat-1) fibroblasts resulted in the strong activation of endogenous JNK and p38 but only a weak activation of ERK. Activation of Delta MEKK3:ER* inhibited cell proliferation through a combination of an initial G1 and G2 cell cycle arrest, followed by a delayed onset of apoptosis. When cells were synchronized in S phase with aphidicolin and then released, activation of Delta MEKK3:ER* resulted in the up-regulation of p21(CIP1) and a pronounced inhibition of cyclin A/CDK2 and cyclin B1/CDK1 kinase activity. Analysis of mitotic figures indicated that cells failed to enter mitosis, arresting late in G2. Delta MEKK3:ER*-mediated CDK inhibition and G2 arrest did not absolutely require p21(CIP1), since both events were observed in Rat-1 cells in which p21(CIP1) is transcriptionally silenced due to promoter methylation. Rather, CDK inhibition was associated with a down-regulation of cyclin A and B1 expression. Finally, application of the p38 inhibitor SB203580 partially restored cyclin B associated kinase activity and allowed cells to proceed through mitosis into the next G1 phase, suggesting that activation of the p38 alpha/beta 2 pathway can promote a G2 cell cycle arrest.
    Oncogene 11/2002; 21(53):8089-104. DOI:10.1038/sj.onc.1206000 · 8.56 Impact Factor
  • Claire R Weston, David G Lambright, Roger J Davis
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen activated protein kinases (MAPKs) are components of signaling pathways that control how cells respond to their environment. There are many different MAPKs and to keep pathways distinct, particular MAPKs must bind their ligands with high specificity. In their Perspective, Weston et al. discuss the structural basis for the signaling specificity of MAPKs.
    Science 07/2002; 296(5577):2345-7. DOI:10.1126/science.1073344 · 31.48 Impact Factor

Publication Stats

2k Citations
120.56 Total Impact Points

Institutions

  • 2003–2010
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2002–2006
    • University of Massachusetts Medical School
      • Program in Molecular Medicine
      Worcester, Massachusetts, United States
  • 2002–2005
    • Babraham Institute
      Cambridge, England, United Kingdom