A. Bécoulet

Cea Leti, Grenoble, Rhône-Alpes, France

Are you A. Bécoulet?

Claim your profile

Publications (153)206.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
    Nuclear Fusion 01/2013; 53:104023. · 2.73 Impact Factor
  • Antennas and Propagation (EUCAP), 2012 6th European Conference on; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tore Supra routinely addresses the physics and technology of very long-duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant lower hybrid current drive (LHCD) launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current profile have been controlled in real-time featuring (i) control of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a 'hot core' plasma regime, (iii) recovery from a voluntarily triggered deleterious magnetohydrodynamic regime. The scrape-off layer (SOL) parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q = 2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic field has been investigated, culminating in the demonstration that this conditioning scheme allows one to recover normal operation after disruptions. The effect of the magnetic field ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results with predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density fluctuations and wavenumber spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent fluctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
    Nuclear Fusion 08/2011; 51(9):094014. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Steady-state long pulse operation of tokamaks requires fully non-inductive current drive, thus an external current drive method. Lower Hybrid Current Drive is recognized as one of the most efficient technique used in the present day tokamaks. Progress of the conceptual design of the LHCD ITER relevant system is reported, as well as critical technology issues.
    Fusion Engineering and Design. 02/2011; 86(6-8):490-496.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a new approach for ICRH loads used in laboratory testing. Classical “water” loads are convenient but strongly limited in terms of performances. Development of high permittivity loads is under investigation to improve ICRF antenna laboratory testing. Ferroelectric BaTiO3 ceramic materials along with metamaterials are shown to be promising candidates.
    Fusion Engineering and Design. 01/2011; 86:2651-2654.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A detailed study of lower hybrid current drive (LHCD) in ITER is provided, focusing on the wave propagation and current drive mechanisms. A combination of ray-tracing and Fokker-Planck calculations are presented for various plasma scenarios, wave frequency and polarization. The dependence of the driven current and the location of power deposition upon the coupled wave spectrum is systematically determined, in order to set objectives for the antenna design. The respective effects of finite-power levels, magnetic trapping, and detailed antenna spectra are accounted for and quantitatively estimated. The sensitivity of LHCD to density and temperature profiles is calculated. From the simulation results, an optimum value for the parallel index of refraction is proposed as a compromise between efficiency and robustness with respect to those profile variations. The corresponding current drive efficiency is found to be similar for the two frequencies generally considered for ITER, f = 3.7 GHz and f = 5.0 GHz.
    Nuclear Fusion 01/2011; 51(7):073025. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper considers the heating mix of ITER for the two main scenarios. Presently, 73MWof absorbed power are foreseen in the mix 20/33/20 for ECH, NBI and ICH. Given a sufficient edge stability, Q = 10—the goal of scenario 2—can be reached with 40MW power irrespective of the heating method but depends sensitively inter alia on the H-mode pedestal temperature, the density profile shape and on the characteristics of impurity transport. ICH preferentially heats the ions and would contribute specifically with ΔQ < 1.5. The success of the Q = 5 steady-state scenario 4 with reduced current requires discharges with improved confinement necessitating weakly or strongly reversed shear, fbs > 0.5, and strong off-axis current drive (CD). The findings presented here are based on revised CD efficiencies γ for ECCD and a detailed benchmark of several CD codes. With ECCD alone, the goals of scenario 4 can hardly be reached. Efficient off-axis CDis only possible with NBI. With beams, inductive discharges with fni > 0.8 can be maintained for 3000 s. The conclusion of this study is that the present heating mix of ITER is appropriate. It provides the necessary actuators to induce in a flexible way the best possible scenarios. The development risks of NBI at 1MeV can be reduced by operation at 0.85MeV.
    Plasma Physics and Controlled Fusion 11/2010; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ITER-relevant Lower Hybrid Current Drive (LHCD) launcher, based on the Passive Active Multijunction (PAM) concept, was brought into operation on the Tore Supra tokamak in autumn 2009. The PAM launcher concept was designed in view of ITER to allow efficient cooling of the waveguides, as required for long pulse operation. In addition, it offers low power reflection close to the cut-off density, which is an attractive feature for ITER, where the large distance between the plasma and the wall may bring the density in front of the launcher to low values. The experiments with the PAM on Tore Supra have shown extremely encouraging results in terms of reflected power level and power handling. Power reflection coefficient < 2% is obtained at low density in front of the launcher, i.e. close to the cut-off density, and very good agreement between the experimental results and the coupling code prediction is obtained. Long pulse operation at ITER-relevant power density has been demonstrated. The maximum power and energy reached so far is 2.7MW during 78s, corresponding to a power density of 25MW/m^2, i.e. its design value at f = 3.7GHz. In addition, 2.7MW has been coupled at a plasma-launcher distance of 10cm, with a power reflection coefficient < 2%. Finally, full non-inductive discharges of 50s have been sustained with the PAM.
    23rd IAEA Fusion Energy Conference; 10/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new ITER-relevant lower hybrid current drive (LHCD) launcher, based on the passive-active-multijunction (PAM) concept, was brought into operation on the Tore Supra tokamak in autumn 2009. The PAM launcher concept was designed in view of ITER to allow efficient cooling of the waveguides, as required for long pulse operation. In addition, it offers low power reflection close to the cut-off density, which is very attractive for ITER, where the large distance between the plasma and the wall may bring the density in front of the launcher to low values. The first experimental campaign on Tore Supra has shown extremely encouraging results in terms of reflected power level and power handling. Power reflection coefficient <2% is obtained at low density in front of the launcher, i.e. close to the cut-off density, and very good agreement between the experimental results and the coupling code predictions is obtained. Long pulse operation at ITER-relevant power density has been demonstrated. The maximum power and energy reached so far is 2.7 MW during 78 s, corresponding to a power density of 25 MW m−2, i.e. its design value at f = 3.7 GHz. In addition, 2.7 MW has been coupled at a plasma–launcher distance of 10 cm, with a power reflection coefficient <2%. Finally, full non-inductive discharges have been sustained for 50 s with the PAM.
    Nuclear Fusion 09/2010; 50(11):112002. · 2.73 Impact Factor
  • 37th EPS conference on plasma physics; 06/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CRONOS is a suite of numerical codes for the predictive/interpretative simulation of a full tokamak discharge. It integrates, in a modular structure, a 1D transport solver with general 2D magnetic equilibria, several heat, particle and impurities transport models, as well as heat, particle and momentum sources. This paper gives a first comprehensive description of the CRONOS suite: overall structure of the code, main available models, details on the simulation workflow and numerical implementation. Some examples of applications to the analysis of experimental discharges and the predictions of ITER scenarios are also given.
    Nuclear Fusion 03/2010; 50(4):043001. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 20 MW∕5 GHz Lower Hybrid Current Drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q = 5 steady state target. Though not part of currently planned procurement phase, it is now under consideration for an earlier delivery. An LH program has been initiated under EFDA, following the ITER STAC recommendation, to provide a pre‐design document including the conceptual design, costing, possible procurement allocation, WBS and R&D needs.
    AIP Conference Proceedings. 11/2009; 1187(1):411-413.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These 'water' loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads). Preliminary results are very encouraging.
    AIP Conference Proceedings 11/2009; 1187(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main results of the Tore Supra experimental programme in the years 2007–2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include test and validation of a new, load-resilient concept of ion cycotron resonance heating antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by electron cyclotron current drive in the presence of fast ion tails; ECRH-assisted plasma start-up studies; dimensionless scalings of transport and turbulence; transport experiments using active perturbation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
    Nuclear Fusion 09/2009; 49(10):104010. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lower hybrid (LH) assisted plasma current ramp-up in ITER is demonstrated using a free-boundary full tokamak discharge simulator which combines the DINA-CH and CRONOS codes. LH applied from the initial phase of the plasma current ramp-up increases the safety margins in operating the superconducting poloidal field coils both by reducing resistive ohmic flux consumption and by providing non-inductively driven plasma current. Loss of vertical control associated with high plasma internal inductance is avoided by tailoring the plasma current density profiles. Effects of early LH application on the plasma shape evolution are identified by the free-boundary plasma simulation.
    Plasma Physics and Controlled Fusion 05/2009; · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; betaN above 3, H98(y, 2) up to 2.0, fBS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally, ideal MHD stability is investigated for the ITER-relevant advanced scenarios in KSTAR. The methods and results presented in this paper are expected to contribute to improving the ITER and beyond ITER predictive simulations.
    Nuclear Fusion 01/2009; 49(11). · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 20 MW/5 GHz lower hybrid current drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q = 5 steady state target. Though not part of the currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed. Furthermore, an appropriate work plan is also developed. This work plan for design, R&D, procurement and installation of a 20 MW LHCD system on ITER follows the ITER Scientific and Technical Advisory Committee (STAC) T13-05 task instructions. It gives more details on the various scientific and technical implications of the system, without presuming on any work or procurement sharing amongst the possible ITER partners(b). This document does not commit the Institutions or Domestic Agencies of the various authors in that respect.
    Nuclear Fusion 01/2009; 49(7). · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DEMO is the main step foreseen after ITER to demonstrate the technological and commercial viability of a fusion power plant. DEMO R&D requirements are usually identified on the basis of the functions expected from each individual system. An approach based on the analysis of overall plant functional requirements sheds new light on R&D needs. The analysis presented here focuses on two overall functional requirements, efficiency and availability. The results of this analysis are presented here putting emphasis on systems not sufficiently considered up to now, e.g. the heating and current drive systems, while more commonly addressed systems such as tritium breeding blankets are not discussed in detail. It is also concluded that an overall functional analysis should be adopted very early in the DEMO conceptual design studies in order to provide a fully integrated approach, which is an absolute requirement to ensure that the ambitious goals of this device will be ultimately met.
    Fusion Engineering and Design. 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 20 MW/5 GHz lower hybrid current drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q = 5 steady state target. Though not part of the currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed. Furthermore, an appropriate work plan is also developed. This work plan for design, R&D, procurement and installation of a 20 MW LHCD system on ITER follows the ITER Scientific and Technical Advisory Committee (STAC) T13-05 task instructions. It gives more details on the various scientific and technical implications of the system, without presuming on any work or procurement sharing amongst the possible ITER partnersb The LHCD system of ITER is not part of the initial cost sharing.. This document does not commit the Institutions or Domestic Agencies of the various authors in that respect.
    Nuclear Fusion 01/2009; · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A prototype of ICRF antenna based on the load-resilient electrical layout anticipated for ITER has been built at CEA-Cadarache. It consists of two toroidally adjacent resonant double loops (RDLs) based on the conjugate-T concept proposed for the ITER ICRF array. This prototype has been recently validated in Tore Supra plasmas exhibiting fast density perturbations in front of the antenna. This paper reports on the load resilience properties of the antenna prototype, as well as the RF modeling and the commissioning. Significant effort on modeling, coupled to an extensive low power campaign, has allowed characterization of the antenna in both vacuum and plasma loading conditions. Plasma load modelings computed with the code TOPICA – very helpful to set up the matching points on plasmas – are found to be in good agreement with the experimental results. The main studies focus on load resilience properties have been carried out in L-mode plasmas. Supersonic molecular beam injection (SMBI), able to launch a series of very short/dense gas jets at Mach number up to 5, was used to mimic the sudden increases of the antenna coupling provoked by ELMs. The results are found to be in good agreement with RF circuit calculations that include 3D modeling.
    Fusion Engineering and Design. 01/2009;

Publication Stats

803 Citations
206.92 Total Impact Points

Institutions

  • 1990–2011
    • Cea Leti
      Grenoble, Rhône-Alpes, France
  • 2009
    • École Polytechnique
      Paliseau, Île-de-France, France
    • Università degli Studi di Torino
      Torino, Piedmont, Italy
  • 2007
    • Chalmers University of Technology
      Goeteborg, Västra Götaland, Sweden