D W Hay

Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States

Are you D W Hay?

Claim your profile

Publications (85)368.85 Total impact

  • D W Hay, H M Sarau
    [show abstract] [hide abstract]
    ABSTRACT: Inflammatory cells are thought to be instrumental in the pathophysiology of pulmonary diseases, and control of their recruitment and activation in the lung would appear to be an attractive strategy for therapeutic intervention. Interleukin-8 and related CXC chemokines are involved in the function of neutrophils and T cells, and have been implicated in several lung diseases. Small-molecule antagonists of the interleukin-8 receptors have been identified, which may help elucidate the role of interleukin-8 and related chemokines in the pathophysiology of lung diseases.
    Current Opinion in Pharmacology 07/2001; 1(3):242-7. · 5.44 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The cysteinyl leukotrienes (CysLTs), LTC4, LTD4 and LTE4, lipid products derived from arachidonic acid metabolism, have been implicated in the pathophysiology of several inflammatory diseases, in particular, asthma. This unit describes techniques and applications for the measurement of contractile responses to the CysLTs in isolated smooth muscle preparations. The contractions are assessed by standard methods for the isometric measurement of responses (contractile or relaxant) of isolated tissues to exogenous agonists, and a detailed description of the methods employed to assess CysLT-induced contractions in guinea-pig trachea is outlined. However, the same general methodology (other than parameters such as dissection for non-airway tissues) are appropriate for measuring CysLT-induced contractions in airway preparations from other animals, and in non-airways tissues (e.g., the gastrointestinal tract) from different species, and also in exploring the relaxant responses to the CysLTs that have been demonstrated in some tissues (e.g., pulmonary vein or artery).
    Current protocols in pharmacology 05/2001; Chapter 4:Unit 4.16.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The role of endothelin B (ET(B)) receptors in mediating ET ligand-induced contractions in mouse trachea was examined in ET(B) receptor knockout animals. Autoradiographic binding studies, using [(125)I]-ET-1, confirmed the presence of ET(A) receptors in tracheal and bronchial airway smooth muscle from wild-type (+/+) and homozygous recessive (-/-) ET(B) receptor knockout mice. In contrast, ET(B) receptors were not detected in airway tissues from (-/-) mice. In tracheae from (+/+) mice, the rank order of potencies of the ET ligands was sarafotoxin (Stx) S6c>ET-1>ET-3; Stx S6c had a lower efficacy than ET-1 or ET-3. In tissues from (-/-) mice there was no response to Stx S6c (up to 0.1 microM), whereas the maximum responses and potencies of ET-1 and ET-3 were similar to those in (+/+) tracheae. ET-3 concentration-response curve was biphasic in (+/+) tissues (via ET(A) and ET(B) receptor activation), and monophasic in (-/-) preparations (via stimulation of only ET(A) receptors). In (+/+) preparations SB 234551 (1 nM), an ET(A) receptor-selective antagonist, inhibited the secondary phase, but not the first phase, of the ET-3 concentration-response curve, whereas A192621 (100 nM), an ET(B) receptor-selective antagonist, had the opposite effect. In (-/-) tissues SB 234551 (1 nM), but not A192621 (100 nM), produced a rightward shift in ET-3 concentration-response curves. The results confirm the significant influence of both ET(A) and ET(B) receptors in mediating ET-1-induced contractions in mouse trachea. Furthermore, the data do not support the hypothesis of atypical ET(B) receptors. In this preparation ET-3 is not an ET(B) receptor-selective ligand, producing contractions via activation of both ET(A) and ET(B) receptors.
    British Journal of Pharmacology 04/2001; 132(8):1905-15. · 5.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Starting with a partial sequence from Genbank, polymerase chain reaction (PCR) was utilized to isolate the full-length cDNA for NK(3) receptor from mouse brain. The murine NK(3) receptor has a predicted sequence of 452 amino acids, sharing 96% and 86% identity to the rat and human NK(3) receptors, respectively. Binding affinities and functional potencies of tachykinin receptor agonists were similar in HEK (human embryonic kidney) 293 cells expressing murine NK(3) receptor and human NK(3) receptor, although substance P and neurokinin A were more potent stimulators of Ca(2+) mobilization in murine NK(3) receptor cells. NK(3) receptor-selective antagonists from two structural classes, had 10- to 100-fold lower binding affinities for murine NK(3) receptor compared to human NK(3) receptor, and about 5- to 10-fold reduced potency in the murine NK(3) receptor functional assay. The results demonstrate species differences in the potencies of tachykinin receptor antagonists in murine and human NK(3) receptors, and the lower potencies in the former should be taken into consideration when using murine disease models.
    European Journal of Pharmacology 03/2001; 413(2-3):143-50. · 2.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Although 3':5' cyclic adenosine monophosphate (cAMP) is known to modulate cytokine production in a number of cell types, little information exists regarding cAMP-mediated effects on this synthetic function of human airway smooth-muscle (HASM) cells. We examined the effect of increasing intracellular cAMP concentration ([cAMP](i)) on tumor necrosis factor (TNF)-alpha-induced regulated on activation, normal T cells expressed and secreted (RANTES) and interleukin (IL)-6 secretion from cultured HASM cells. Pretreatment of HASM with prostaglandin (PG) E(2), forskolin, or dibutyryl cAMP inhibited TNF-alpha-induced RANTES secretion but increased TNF-alpha-induced IL-6 secretion. Moreover, stimulation with PGE(2), forskolin, or dibutyryl cAMP alone increased basal IL-6 secretion in a concentration-dependent manner. SB 207499, a specific phosphodiesterase type 4 inhibitor, augmented the inhibitory effects of PGE(2) and forskolin on TNF-alpha-induced RANTES. Collectively, these data demonstrate that increasing [cAMP](i) in HASM effectively increases IL-6 secretion but reduces RANTES secretion promoted by TNF-alpha. Reverse transcriptase/polymerase chain reaction and ribonuclease protection assays suggested that these opposite effects of increased [cAMP](i) on TNF-alpha- induced IL-6 and RANTES secretion may occur at the transcriptional level. Accordingly, we examined the effects of TNF- alpha and cAMP on the regulation of nuclear factor (NF)-kappaB, a transcription factor known to modulate cytokine synthesis in numerous cell types. Stimulation of HASM cells with TNF-alpha increased NF-kappaB DNA-binding activity. However, increased [cAMP](i) in HASM neither activated NF-kappaB nor altered TNF-alpha- induced NF-kappaB DNA-binding activity. These results were confirmed using a NF-kappaB-luciferase reporter assay. Together, our data suggest that TNF-alpha-induced IL-6 and RANTES secretion may be associated with NF-kappaB activation, and that inhibition of TNF-alpha-stimulated RANTES secretion and augmentation of IL-6 secretion by increased [cAMP](i) in HASM cells occurs via an NF-kappaB-independent mechanism.
    American Journal of Respiratory Cell and Molecular Biology 01/2001; 23(6):794-802. · 4.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The effects of a second generation p38 mitogen-activated protein kinase (MAPK) inhibitor, SB 239063 [trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl)-5-(2-methoxypyridim idi n-4-yl)imidazole; IC(50) = 44 nM vs. p38 alpha], were assessed in models that represent different pathological aspects of chronic obstructive pulmonary disease (COPD) [airway neutrophilia, enhanced cytokine formation and increased matrix metalloproteinase (MMP)-9 activity] and in a model of lung fibrosis. Airway neutrophil infiltration and interleukin (IL)-6 levels, assessed by bronchoalveolar lavage 48 h after lipopolysaccharide (LPS) inhalation, were inhibited dose dependently by 3-30 mg/kg of SB 239063 given orally twice a day. In addition, SB 239063 (30 mg/kg orally) attenuated IL-6 bronchoalveolar lavage fluid concentrations (>90% inhibition) and MMP-9 activity (64% inhibition) assessed 6 h after LPS exposure. In guinea pig cultured alveolar macrophages, SB 239063 inhibited LPS-induced IL-6 production (IC(50) of 362 nM). In a bleomycin-induced pulmonary fibrosis model in rats, treatment with SB 239063 (2.4 or 4.8 mg/day via osmotic pump) significantly inhibited bleomycin-induced right ventricular hypertrophy (indicative of secondary pulmonary hypertension) and increases in lung hydroxyproline synthesis (indicative of collagen synthesis and fibrosis). Therefore, SB 239063 demonstrates activity against a range of sequelae commonly associated with COPD and fibrosis, supporting the therapeutic potential of p38 MAPK inhibitors such as SB 239063 in chronic airway disease.
    AJP Lung Cellular and Molecular Physiology 12/2000; 279(5):L895-902. · 3.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The pharmacological and pharmacokinetic profile of SB-222200 [(S)-(-)-N-(alpha-ethylbenzyl)-3-methyl-2-phenylquinoline-4-car boxami de], a human NK-3 receptor (hNK-3R) antagonist, was determined. SB-222200 inhibited (125)I-[MePhe(7)]neurokinin B (NKB) binding to Chinese hamster ovary (CHO) cell membranes stably expressing the hNK-3 receptor (CHO-hNK-3R) with a K(i) = 4.4 nM and antagonized NKB-induced Ca(2+) mobilization in HEK 293 cells stably expressing the hNK-3 receptor (HEK 293-hNK-3R) with an IC(50) = 18.4 nM. SB-222200 was selective for hNK-3 receptors compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 250 nM). In HEK 293 cells transiently expressing murine NK-3 receptors (HEK 293-mNK-3R), SB-222200 inhibited binding of (125)I-[MePhe(7)]NKB (K(i) = 174 nM) and antagonized NKB (1 nM)-induced calcium mobilization (IC(50) = 265 nM). In mice oral administration of SB-222200 produced dose-dependent inhibition of behavioral responses induced by i.p. or intracerebral ventricular administration of the NK-3 receptor-selective agonist, senktide, with ED(50) values of approximately 5 mg/kg. SB-222200 effectively crossed the blood-brain barrier in the mouse and rat. The inhibitory effect of SB-222200 against senktide-induced behavioral responses in the mouse correlated significantly with brain, but not plasma, concentrations of the compound. Pharmacokinetic evaluation of SB-222200 in rat after oral administration (8 mg/kg) indicated sustained plasma concentrations (C(max) = about 400 ng/ml) and bioavailability of 46%. The preclinical profile of SB-222200, demonstrating high affinity, selectivity, reversibility, oral activity, and central nervous system penetration, suggests that it will be a useful tool compound to define the physiological and pathophysiological roles of NK-3 receptors, in particular in the central nervous system.
    Journal of Pharmacology and Experimental Therapeutics 10/2000; 295(1):373-81. · 3.89 Impact Factor
  • D W Hay
    [show abstract] [hide abstract]
    ABSTRACT: Despite the high prevalence of and mortality from chronic obstructive pulmonary disease, extensive research on the underlying pathophysiology and specific therapeutics for this disease is, relatively, in its infancy. Several novel molecular targets are being investigated as potential treatments for the disease. The most exciting new class of compounds is the phosphodiesterase 4 inhibitors; Ariflo (SB 207499)-a member of this class, and the most advanced in development (Phase III)-was reported recently to have significant clinical efficacy in patients with chronic obstructive pulmonary disease. Phosphodiesterase 4 inhibitors, such as Ariflo, possibly represent the most important advance in pulmonary medicine in recent years.
    Current Opinion in Chemical Biology 09/2000; 4(4):412-9. · 9.47 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: There have been proposals that the tachykinin receptor classification should be extended to include a novel receptor, the "neurokinin-4" receptor (NK-4R), which has a close homology with the human NK-3 receptor (hNK-3R). We compared the pharmacological and molecular biological characteristics of the hNK-3R and NK-4R. Binding experiments, with (125)I-[MePhe(7)]-NKB binding to HEK 293 cell membranes transiently expressing the hNK-3R (HEK 293-hNK-3R) or NK-4R (HEK 293-NK-4R), and functional studies (Ca(2+) mobilization in the same cells) revealed a similar profile of sensitivity to tachykinin agonists and antagonists for both receptors; i.e., in binding studies with the hNK-3R, MePhe(7)-NKB > NKB > senktide > NKA = Substance P; with the NK-4R, MePhe(7)-NKB > NKB = senktide > Substance P = NKA; and with antagonists, SB 223412 = SR 142801 > SB 222200 > SR 48968 > CP 99994 for both hNK-3R and NK-4R. Thus, the pharmacology of the two receptors was nearly identical. However, attempts to isolate or identify the NK-4R gene by using various molecular biological techniques were unsuccessful. Procedures, including nested polymerase chain reaction studies, that used products with restriction endonuclease sites specific for either hNK-3R or NK-4R, failed to demonstrate the presence of NK-4R in genomic DNA from human, monkey, mouse, rat, hamster, or guinea pig, and in cDNA libraries from human lung, brain, or heart, whereas the hNK-3R was detectable in the latter libraries. In view of the failure to demonstrate the presence of the putative NK-4R it is thought to be premature to extend the current tachykinin receptor classification.
    Molecular Pharmacology 09/2000; 58(3):552-9. · 4.41 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The cardiopulmonary profile of three rat strains (Sprague-Dawley, Wistar and High altitude-sensitive) was compared upon exposure to hypoxia (9% O2) for 0, 7 or 14 days. No differences were observed among the in vitro contractile (ET-1) and relaxant (carbachol) responses of pulmonary artery isolated from the three strains during normoxia. Chronic hypoxia decreased ET-1 contractile responses and diminished relaxant responses to carbachol similarly in all strains. In Sprague-Dawley, Wistar and High altitude-sensitive rats, pulmonary arterial pressure rose time-dependently and was elevated by 108%, 116% and 167%, respectively, after 14 days of hypoxia compared to normoxic controls. Right ventricular hypertrophy was increased by 51%, 93% and 55%, respectively, at 14 days. Hypoxia-induced hypertrophy and medial thickening in the pulmonary vasculature were more pronounced in High altitude-sensitive rats. Sprague-Dawley exhibited hypoxia-induced airway hyperresponsiveness to intravenous methacholine, but there were no hypoxia- or strain-related differences in in vitro tracheal contractility. Although each strain exhibited greater sensitivity for a particular hypoxia-induced parameter, pulmonary vascular functional and structural changes suggest that High altitude-sensitive rats represent a choice model of hypoxia-induced pulmonary hypertension.
    Clinical and Experimental Hypertension 08/2000; 22(5):471-92. · 1.28 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The anti-inflammatory/antiallergic activity of a novel second-generation p38 mitogen-activated protein kinase inhibitor, SB 239063[trans-1-(4-hydroxycyclohexyl) -4-(4-fluorophenyl)-5-(2-methoxypyridimidin-4-yl)imidazole], was investigated in vivo and in vitro. SB 239063 had an IC(50) of 44 nM for inhibition of recombinant purified human p38alpha. In lipopolysaccharide-stimulated human peripheral blood monocytes, SB 239063 inhibited interleukin-1 and tumor necrosis factor-alpha production (IC(50) values = 0.12 and 0.35 microM, respectively). A role for p38 kinase in cytokine-associated inflammation in the mouse was shown by p38 activation in the lung and inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha production by SB 239063 (ED(50) = 5.8 mg/kg p.o.). Antiallergic activity was demonstrated by essential abolition (approximately 93% inhibition) of inhaled ovalbumin (OA)-induced airway eosinophilia by SB 239063 (12 mg/kg p.o.), measured by bronchoalveolar lavage (BAL) in OA-sensitized mice. In addition, p38 kinase was found by Western analysis to be activated in guinea pig lung. Administration of SB 239063 (10 or 30 mg/kg p.o.) in conscious guinea pigs markedly reduced ( approximately 50% inhibition) OA-induced pulmonary eosinophil influx, measured by BAL 24 h after antigen. SB 239063 (10 mg/kg b.i.d. p.o.) administered after leukotriene D(4) inhalation, reduced by 60% the persistent airway eosinophilia seen at 4 days. Apoptosis of cultured eosinophils isolated from guinea pig BAL was increased by SB 239063 (1-10 microM) in the presence of interleukin-5. These results indicate that SB 239063 is a potent inhibitor of inflammatory cytokine production, inhibits eosinophil recruitment, in addition to enhancing apoptosis of these cells. Collectively, the results support the potential utility of p38 kinase inhibitors, such as SB 239063, for the treatment of asthma and other inflammatory disorders.
    Journal of Pharmacology and Experimental Therapeutics 05/2000; 293(1):281-8. · 3.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In this study, the activity of the delta-opioid receptor subtype-selective agonist, SB 227122, was investigated in a guinea pig model of citric acid-induced cough. Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively. The nonselective opioid receptor antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or SB 227122, indicating that the antitussive activity of both compounds is opioid receptor-mediated. The delta-receptor antagonist, SB 244525 (10 mg/kg, i.p.), inhibited the antitussive effect of SB 227122 (20 mg/kg, i.p.). In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.). The sigma-receptor antagonist rimcazole (3 mg/kg, i.p.) inhibited the antitussive effect of dextromethorphan (30 mg/kg, i.p.), a sigma-receptor agonist, but not that of SB 227122. These studies provide compelling evidence that the antitussive effects of SB 227122 in this guinea pig cough model are mediated by agonist activity at the delta-opioid receptor.
    Journal of Pharmacology and Experimental Therapeutics 03/2000; 292(2):803-9. · 3.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The role of endothelin B (ET(B)) receptors in inflammation and nociception was examined using ET(B) receptor knockout mice. Genotyping studies were used with tissues from ET(B)((+/+)), ET(B)((+/-)), and ET(B)((-/-)) mice to confirm the loss of ET(B) receptors. Algesia induced by phenylbenzoquinone was evident in the (+/+) mice, reduced by approximately 80% in the (+/-) mice, and absent in the (-/-) mice. Phenylbenzoquinone-induced algesia in (+/+) mice was inhibited 74% by the ET(B) receptor-selective antagonist A192621 (25 mg/kg p.o.), but unaffected by the ET(A) receptor-selective antagonist SB 234551 (25 mg/kg p.o.). Noninflammatory pain, induced by hotplate, was equivalent between (+/+) and (-/-) mice. The cutaneous inflammatory response to topical arachidonic acid (AA) also was evaluated. Whereas (+/+) mice had a marked inflammatory response to AA, the (+/-), and (-/-) mice had significantly reduced fluid phase responses (37 and 65% inhibition, respectively). Neutrophil infiltration also was reduced in the (+/-) and (-/-) mice (51 and 65% reduction, respectively). Topical administration of A192621 (500 microg/ear) in (+/+) mice inhibited AA-induced swelling (39%), whereas SB 234551 (500 microg/ear) was without effect. Collectively, these results implicate the ET(B) receptor in mediation of inflammatory pain and cutaneous inflammatory responses in mice.
    Molecular Pharmacology 11/1999; 56(4):807-12. · 4.41 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Urotensin-II (U-II) is a vasoactive 'somatostatin-like' cyclic peptide which was originally isolated from fish spinal cords, and which has recently been cloned from man. Here we describe the identification of an orphan human G-protein-coupled receptor homologous to rat GPR14 and expressed predominantly in cardiovascular tissue, which functions as a U-II receptor. Goby and human U-II bind to recombinant human GPR14 with high affinity, and the binding is functionally coupled to calcium mobilization. Human U-II is found within both vascular and cardiac tissue (including coronary atheroma) and effectively constricts isolated arteries from non-human primates. The potency of vasoconstriction of U-II is an order of magnitude greater than that of endothelin-1, making human U-II the most potent mammalian vasoconstrictor identified so far. In vivo, human U-II markedly increases total peripheral resistance in anaesthetized non-human primates, a response associated with profound cardiac contractile dysfunction. Furthermore, as U-II immunoreactivity is also found within central nervous system and endocrine tissues, it may have additional activities.
    Nature 10/1999; 401(6750):282-6. · 38.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The cysteinyl leukotrienes (CysLTs) have been implicated in the pathophysiology of inflammatory disorders, in particular asthma, for which the CysLT receptor antagonists pranlukast, zafirlukast, and montelukast, have been introduced recently as novel therapeutics. Here we report on the molecular cloning, expression, localization, and pharmacological characterization of a CysLT receptor (CysLTR), which was identified by ligand fishing of orphan seven-transmembrane-spanning, G protein-coupled receptors. This receptor, expressed in human embryonic kidney (HEK)-293 cells responded selectively to the individual CysLTs, LTC(4), LTD(4), or LTE(4), with a calcium mobilization response; the rank order potency was LTD(4) (EC(50) = 2.5 nM) > LTC(4) (EC(50) = 24 nM) > LTE(4) (EC(50) = 240 nM). Evidence was provided that LTE(4) is a partial agonist at this receptor. [(3)H]LTD(4) binding and LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor were potently inhibited by the structurally distinct CysLTR antagonists pranlukast, montelukast, zafirlukast, and pobilukast; the rank order potency was pranlukast = zafirlukast > montelukast > pobilukast. LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor was not affected by pertussis toxin, and the signal appears to be the result of the release from intracellular stores. Localization studies indicate the expression of this receptor in several tissues, including human lung, human bronchus, and human peripheral blood leukocytes. The discovery of this receptor, which has characteristics of the purported CysLT(1) receptor subtype, should assist in the elucidation of the pathophysiological roles of the CysLTs and in the identification of additional receptor subtypes.
    Molecular Pharmacology 09/1999; 56(3):657-63. · 4.41 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Airway smooth muscle thickening is a characteristic feature of airway wall remodelling in chronic asthma. We have investigated the role of the leukotrienes in airway smooth muscle (ASM) and epithelial cell DNA synthesis and ASM thickening following repeated allergen exposure in Brown Norway rats sensitized to ovalbumin. There was a 3 fold increase in ASM cell DNA synthesis, as measured by percentage bromodeoxyuridine (BrdU) incorporation, in repeatedly ovalbumin-exposed (4.1%, 3.6-4.6; mean, 95% c.i.) compared to chronically saline-exposed rats (1.3%, 0.6-2.1; P<0.001). Treatment with a 5-lipoxygenase enzyme inhibitor (SB 210661, 10 mg kg(-1), p.o.) and a specific cysteinyl leukotriene (CysLT1) receptor antagonist, pranlukast (SB 205312, 30 mg kg(-1), p.o.), both attenuated ASM cell DNA synthesis. Treatment with a specific leukotriene B4 (BLT) receptor antagonist (SB 201146, 15 mg kg(-1), p.o.) had no effect. There was also a significant, 2 fold increase in the number of epithelial cells incorporating BrdU per unit length of basement membrane after repeated allergen exposure. This response was not inhibited by treatment with SB 210661, pranlukast or SB 201146. A significant increase in ASM thickness was identified following repeated allergen exposure and this response was attenuated significantly by SB 210661, pranlukast and SB 201146. Rats exposed to chronic allergen exhibited bronchial hyperresponsiveness to acetylcholine and had significant eosinophil recruitment into the lungs. Treatment with SB 210661, pranlukast or SB 201146 significantly attenuated eosinophil recruitment into the lungs, whilst having no significant effect on airway hyperresponsiveness. These data indicate that the cysteinyl leukotrienes are important mediators in allergen-induced ASM cell DNA synthesis in rats, while both LTB4 and cysteinyl leukotrienes contribute to ASM thickening and eosinophil recruitment following repeated allergen exposure.
    British Journal of Pharmacology 08/1999; 127(5):1151-8. · 5.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Leukotriene B4 (LTB4) and 12-(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-[R]-HETE) have been postulated to contribute to the pathophysiology of inflammatory diseases. SB 201993, (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl] oxy]-2-pyridinyl] methyl] thio] methyl] benzoic acid, identified from a chemical series designed as ring-fused analogs of LTB4, was evaluated as an antagonist of LTB4- and 12-(R)-HETE-induced responses in vitro and for anti-inflammatory activity in vivo. SB 201993 competitively antagonized [3-H]-LTB4 binding to intact human neutrophils (Ki = 7.6 nM) and to membranes of RBL 2H3 cells expressing the LTB4 receptor (RBL 2H3-LTB4R; IC50 = 154 nM). This compound demonstrated competitive antagonism of LTB4- and 12-(R)-HETE-induced Ca2+ mobilization responses in human neutrophils (IC50s of 131 nM and 105 nM, respectively) and inhibited LTB4-induced Ca2+ mobilization in human cultured keratinocytes (IC50 = 61 nM), RBL 2H3-LTB4R cells (IC50 = 255 nM) and mouse neutrophils (IC50 = 410 nM). SB 201993 showed weak LTD4-receptor binding affinity (Ki = 1.9 microM) and inhibited 5-lipoxygenase (IC50 of 3.6 microM), both in vitro and ex vivo. In vivo, SB 201993 inhibited LTB4-induced neutrophil infiltration in mouse skin and produced dose-related, long lasting topical anti-inflammatory activity against the fluid and cellular phases of arachidonic acid-induced mouse ear inflammation (ED50 of 580 microg/ear and 390 microg/ear, respectively). Similarly, anti-inflammatory activity was also observed in the murine phorbol ester-induced cutaneous inflammation model (ED50 of 770 and 730 microg/ear, respectively, against the fluid and cellular phases). These results indicate that SB 201993 blocks the actions of LTB4 and 12-(R)-HETE and inhibits a variety of inflammatory responses; and thus may be a useful compound to evaluate the role of these mediators in disease models.
    Prostaglandins Leukotrienes and Essential Fatty Acids 08/1999; 61(1):55-64. · 2.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Results from a medicinal chemistry approach aimed at replacing the quinoline ring system in the potent and selective human neurokinin-3 (hNK-3) receptor antagonists 1-4 of general formula I are discussed. The data give further insight upon the potential NK-3 pharmacophore. In particular, it is highlighted that both the benzene-condensed ring and the quinoline nitrogen are crucial determinants for optimal binding affinity to the hNK-3 receptor. Some novel compounds maintained part of the binding affinity to the receptor (5, 6, 10 and 13) and compound 5, featuring the naphthalene ring system, appears to be suitable for further modifications; it offers the option to introduce electron-withdrawing groups at position 2 and 4, conferring on the ring an overall electron-deficiency similar to that of the quinoline.
    Il Farmaco 07/1999; 54(6):364-74.
  • [show abstract] [hide abstract]
    ABSTRACT: Tension and phosphatidyl inositol (PI) turnover experiments were conducted to investigate the receptors and signal transduction pathways responsible for contractions elicited by endothelin (ET) ligands in human bronchus. Nicardipine (1 microM), the L-type calcium channel inhibitor, or incubation in Ca2+-free medium, produced marked inhibition of contractions to the ET(B) receptor-selective agonist, sarafotoxin S6c, and especially those induced by KCl. In contrast, Ca2+-free medium was without appreciable effect against contraction produced by endothelin-1 (ET-1), the non-selective ET(A) and ET(B) receptor agonist. In Ca2+-free medium, ryanodine (10 microM), which inhibits intracellular calcium mobilization, reduced sarafotoxin S6c- and ET-1-induced responses, but was without effect on responses to KCl. Similarly, nickel chloride (Ni2+; 1 mM) caused marked inhibition of contractions induced by sarafotoxin S6c or ET-1, but had no significant effect on KCI concentration-response curves. The mixed ET(A)/ET(B) receptor antagonist SB 209670 (3 microM) inhibited responses to sarafotoxin S6c and ET-1 such that concentration-response curves were shifted rightward, at the 30% maximum response level, by 10.0- and 3.8-fold, respectively, whereas BQ-123 (3 microM), the ET(A) receptor antagonist, was without effect on responses induced by either agonist. ET-1 (1 nM-0.3 microM) caused a concentration-dependent stimulation of PI turnover, whereas sarafotoxin S6c (0.3 nM-0.1 microM) induced only small and variable increases, except at the highest concentration. The increase in PI turnover evoked by ET-1 was inhibited by SB 209670 (3 microM), and also by BQ-123 (3 microM). This is consistent with linkage of ET(A) receptors to activation of inositol phosphate generation in human bronchial smooth muscle cells. Collectively, the data suggest that differences exist in the relative contributions of intracellular and extracellular Ca2+ mobilization mechanisms elicited by ET(A) and ET(B) receptor activation. Thus, sarafotoxin S6c-induced, ET(B) receptor-mediated contraction in human bronchial smooth muscle appears to be dependent, in part, upon extracellular Ca2+, although a significant component of the response was also mediated by intracellular Ca2+ release, including from ryanodine-sensitive stores. ET(A) receptor-mediated contraction of human airway smooth muscle was activated largely via the release of intracellular Ca2+.
    Archiv für Experimentelle Pathologie und Pharmakologie 06/1999; 359(5):404-10. · 2.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Optimization of the previously reported 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonist 14, with regard to potential metabolic instability of the ester moiety and affinity and selectivity for the human neurokinin-3 (hNK-3) receptor, is described. The ester functionality could be successfully replaced by the ketone (31) or by lower alkyl groups (Et, 21, or n-Pr, 24). Investigation of the substitution pattern of the quinoline ring resulted in the identification of position 3 as a key position to enhance hNK-3 binding affinity and selectivity for the hNK-3 versus the hNK-2 receptor. All of the chemical groups introduced at this position, with the exception of halogens, increased the hNK-3 binding affinity, and compounds 53 (3-OH, SB 223412, hNK-3-CHO binding Ki = 1.4 nM) and 55 (3-NH2, hNK-3-CHO binding Ki = 1.2 nM) were the most potent compounds of this series. Selectivity studies versus the other neurokinin receptors (hNK-2-CHO and hNK-1-CHO) revealed that 53 is about 100-fold selective for the hNK-3 versus hNK-2 receptor, with no affinity for the hNK-1 at concentrations up to 100 microM. In vitro studies demonstrated that 53 is a potent functional antagonist of the hNK-3 receptor (reversal of senktide-induced contractions in rabbit isolated iris sphincter muscles and reversal of NKB-induced Ca2+ mobilization in CHO cells stably expressing the hNK-3 receptor), while in vivo this compound showed oral and intravenous activity in NK-3 receptor-driven models (senktide-induced behavioral responses in mice and senktide-induced miosis in rabbits). Overall, the biological data indicate that (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (53, SB 223412) may serve as a pharmacological tool in animal models of disease to assess the functional and pathophysiological role of the NK-3 receptor and to establish therapeutic indications for non-peptide NK-3 receptor antagonists.
    Journal of Medicinal Chemistry 04/1999; 42(6):1053-65. · 5.61 Impact Factor

Publication Stats

2k Citations
368.85 Total Impact Points


  • 1996–1998
    • Hospital of the University of Pennsylvania
      • Department of Medicine
      Philadelphia, Pennsylvania, United States
  • 1990–1995
    • University of Western Australia
      • School of Medicine and Pharmacology
      Perth, Western Australia, Australia
  • 1992
    • King's College London
      Londinium, England, United Kingdom
  • 1988
    • Louisiana State University Health Sciences Center New Orleans
      • Department of Pharmacology and Experimental Therapeutics
      New Orleans, LA, United States
  • 1986
    • University of Strathclyde
      Glasgow, Scotland, United Kingdom