B A Dougherty

Biomedical Research Institute, Rockville, Maryland, United States

Are you B A Dougherty?

Claim your profile

Publications (23)383.21 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.
    Eukaryotic Cell 05/2006; 5(4):638-49. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CFE88 is a conserved essential gene product from Streptococcus pneumoniae. This 227-residue protein has minimal sequence similarity to proteins of known 3D structure. Sequence alignment models and computational protein threading studies suggest that CFE88 is a methyltransferase. Characterization of the conformation and function of CFE88 has been performed by using several techniques. Backbone atom and limited side-chain atom NMR resonance assignments have been obtained. The data indicate that CFE88 has two domains: an N-terminal domain with 163 residues and a C-terminal domain with 64 residues. The C-terminal domain is primarily helical, while the N-terminal domain has a mixed helical/extended (Rossmann) fold. By aligning the experimentally observed elements of secondary structure, an initial unrefined model of CFE88 has been constructed based on the X-ray structure of ErmC' methyltransferase (Protein Data Bank entry 1QAN). NMR and biophysical studies demonstrate binding of S-adenosyl-L-homocysteine (SAH) to CFE88; these interactions have been localized by NMR to the predicted active site in the N-terminal domain. Mutants that target this predicted active site (H26W, E46R, and E46W) have been constructed and characterized. Overall, our results both indicate that CFE88 is a methyltransferase and further suggest that the methyltransferase activity is essential for bacterial survival.
    Protein Science 07/2005; 14(6):1472-84. · 2.74 Impact Factor
  • Protein Science 06/2005; · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively. ThermoFluor was used to screen the protein against a library of 3000 compounds that were specifically selected to provide information about possible biological functions. The results of this screen identified pyridoxal phosphate and pyridoxamine phosphate as equilibrium binding ligands (K(d) approximately 50 pM, K(d) approximately 2.5 microM, respectively), consistent with an enzymatic cofactor function. Several nucleotides and nucleotide sugars were also identified as ligands of this protein. Sequence comparison with two enzymes of known structure but relatively low overall sequence homology established that several key residues directly involved in pyridoxal phosphate binding were strictly conserved. Screening a collection of generic drugs and natural products identified the antifungal compound canescin A as an irreversible covalent modifier of the enzyme. Our investigation of this protein indicates that its probable biological role is that of a nucleoside diphospho-keto-sugar aminotransferase, although the preferred keto-sugar substrate remains unknown. These experiments demonstrate the utility of a generic affinity-based ligand binding technology in decrypting possible biological functions of a protein, an approach that is both independent of and complementary to existing genomic and proteomic technologies.
    Journal of Biological Chemistry 04/2005; 280(12):11704-12. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal model systems are an intricate part of the discovery and development of new medicines. The sequencing of not only the human genome but also those of the various pathogenic bacteria, the nematode Caenorhabditis elegans, the fruitfly Drosophila, and the mouse has enabled the discovery of new drug targets to push forward at an unprecedented pace. The knowledge and tools in these "model" systems are allowing researchers to carry out experiments more efficiently and are uncovering previously hidden biological connections. While the history of bacteria, yeast, and mice in drug discovery are long, their roles are ever evolving. In contrast, the history of Drosophila and C. elegans at pharmaceutical companies is short. We will briefly review the historic role of each model organism in drug discovery and then update the readers as to the abilities and liabilities of each model within the context of drug development.
    Pharmacology [?] Therapeutics 09/2003; 99(2):183-220. · 7.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.
    Science 04/2003; 299(5615):2071-4. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent availability of bacterial genome sequence information permits the identification of conserved genes that are potential targets for novel antibiotic drug discovery. Using a coupled bioinformatic/experimental approach, a list of candidate conserved genes was generated using a Microbial Concordance bioinformatics tool followed by a targeted disruption campaign. Pneumococcal sequence data allowed for the design of precise PCR primers to clone the desired gene target fragments into the pEVP3 'suicide vector'. An insertion-duplication approach was employed that used the pEVP3 constructs and resulted in the introduction of a selectable chloramphenicol resistance marker into the chromosome. In the case of non-essential genes, cells can survive the disruption and form chloramphenicol-resistant colonies. A total of 347 candidate reading frames were subjected to disruption analysis, with 113 presumed to be essential due to lack of recovery of antibiotic-resistant colonies. In addition to essentiality determination, the same high-throughput methodology was used to overexpress gene products and to examine possible polarity effects for all essential genes.
    Nucleic Acids Research 08/2002; 30(14):3152-62. · 8.81 Impact Factor
  • French A Lewis, Brian A Dougherty
    Methods in molecular biology (Clifton, N.J.) 02/2002; 182:173-87. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this era of genomic science, knowledge about biological function is integrated increasingly with DNA sequence data. One area that has been significantly impacted by this accumulation of information is the discovery of drugs to treat microbial infections. Genome sequencing and bioinformatics is driving the discovery and development of novel classes of broad-spectrum antimicrobial compounds, and could enable medical science to keep pace with the increasing resistance of bacteria, fungi and parasites to current antimicrobials. This review discusses the use of genomic information in the rapid identification of target genes for antimicrobial drug discovery.
    Drug discovery today 10/2001; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.
    Science 08/2001; 293(5529):498-506. · 31.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.
    Science 04/2000; 287(5459):1809-15. · 31.03 Impact Factor
  • Source
    M S Lee, B A Dougherty, A C Madeo, D A Morrison
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore the use of insertion-duplication mutagenesis (IDM) as a random gene disruption mutagenesis tool for genomic analysis of Streptococcus pneumoniae, a large mutagenic library of chimeric plasmids with 300-bp inserts was constructed. The library was large enough to produce 60,000 independent plasmid clones in Escherichia coli. Sequencing of a random sample of 84 of these clones showed that 85% of the plasmids had inserts which were scattered widely over the genome; 80% of these plasmids had 240- to 360-bp inserts, and 60% of the inserts targeted internal regions of apparent open reading frames. Thus, the library was both complex and highly mutagenic. To evaluate the randomness of mutagenesis during recombination and to test the usefulness of the library for obtaining specific classes of nonessential genes, this library was used to seek competence-related genes by constructing a large pneumococcal transformant library derived from 20,000 mutagenic plasmids. After we screened the mutants exhaustively for transformation defects, 114 competence-related insertion mutations were identified. These competence mutations hit most previously known genes required for transformation as well as a new gene with high similarity to the Bacillus subtilis competence gene comFA. Mapping of the mutation sites at these competence loci showed that the mutagenesis was highly random, with no apparent hot spots. The recovery of a high proportion of competence genes and the absence of hot spots for mutational hits together show that such a transformant library is useful for finding various types of nonessential genes throughout the genome. Since a promoterless lacZ reporter vector was used for the construction of the mutagenic plasmid library, it also serves as a random transcriptional fusion library. Finally, use of a valuable feature of IDM, directed gene targeting, also showed that essential genes, which can be targets for new drug designs, could be identified by simple sequencing and transformation reactions. We estimate that the IDM library used in this study could readily achieve about 90% genome coverage.
    Applied and Environmental Microbiology 06/1999; 65(5):1883-90. · 3.95 Impact Factor
  • Source
    B A Dougherty, H O Smith
    [Show abstract] [Hide abstract]
    ABSTRACT: Genes required for natural transformation of Haemophilus influenzae Rd were identified by a cassette mutagenesis protocol consisting of the following steps: random insertional mutagenesis, phenotypic screening, sequencing of genome sequence tags from the DNA flanking the insertion in the selected mutants and comparison of genome sequence tags to genomic sequence data. The cassette mutagenesis screen for transformation genes resulted in five distinct mutant classes, two of which have been identified in previous studies. Insertions in the three newly identified loci interrupted genes with predicted protein products homologous to a type IV pilin-like protein biogenesis operon, drug-efflux transporters and a phospholipid-biosynthesis enzyme. The most significant finding of this screen is the requirement for type IV pilin-like proteins in genetic transformation of H. influenzae. These surface structures are utilized for DNA uptake in a number of Gram-positive and Gram-negative bacteria, and appear to be the common component among the systems for DNA binding.
    Microbiology 03/1999; 145 ( Pt 2):401-9. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete sequence of pMRC01, a large conjugative plasmid from Lactococcus lactis ssp. lactis DPC3147, has been determined. Using a shotgun sequencing approach, the 60,232 bp plasmid sequence was obtained by the assembly of 1056 underlying sequences (sevenfold average redundancy). Sixty-four open reading frames (ORFs) were identified. Analysis of the gene organization of pMRC01 suggests that the plasmid can be divided into three functional domains, with each approximately 20 kb region separated by insertion sequence (IS) elements. The three regions are (i) the conjugative transfer region, including a 16-gene Tra (transfer) operon; (ii) the bacteriocin production region, including an operon responsible for the synthesis of the novel bacteriocin lacticin 3147; and (iii) the phage resistance and plasmid replication region of the plasmid. The complete sequence of pMRC01 provides important information about these industrially relevant phenotypes and gives insight into the structure, function and evolution of large gram-positive conjugative plasmids in general. The completely sequenced pMRC01 plasmid should also provide a useful framework for the design of novel plasmids to be incorporated into starter strain improvement programmes for the dairy industry.
    Molecular Microbiology 09/1998; 29(4):1029-38. · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
    Nature 01/1998; 390(6660):580-6. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii. The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii, A. fulgidus has fewer restriction-modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.
    Nature 12/1997; 390(6658):364-70. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.
    Nature 09/1997; 388(6642):539-47. · 38.60 Impact Factor
  • K E Nelson, D L Richardson, B A Dougherty
    [Show abstract] [Hide abstract]
    ABSTRACT: The availability of completely sequenced genomes has created an opportunity for high throughput mutational studies. Using the conjugative transposon Tn916, a pilot project was initiated to determine the efficiency of gene disruption in the first completely sequenced bacterium, Haemophilus influenzae Rd strain KW20. DNA was isolated from Tn916-mutagenized cells, and the point of transposon insertion was determined by inverse PCR, DNA sequencing, and mapping to the wild-type genome sequence. Analysis of the insertion sites at the nucleotide level demonstrated a biased pattern of insertion into regions rich in stretches of A's and T's. Although Tn916 integrated at multiple dispersed positions throughout the chromosome, 9 of 10 insertion events occurred in noncoding, intergenic DNA. It was determined that the intergenic DNA was over 5% more A + T-rich than that of protein coding sequences. This suggests that A + T-rich sequences similar to the Tn916 insertion site would be more likely to reside in the intergenic DNA. In an effort to identify other likely sites for transposon integration, a hidden Markov model of the consensus target insertion site was derived from the Tn916-H. influenzae junction fragments and searched against the entire genome. Eighty percent of the 30 highest-scoring predicted Tn916 target sites were from intergenic, nonprotein-coding regions of the genome. These data support the hypothesis that Tn916 has a marked preference for insertion into noncoding DNA for H. influenzae, suggesting that this mobile element has evolved to minimize disruption of host cell function on integration.
    Microbial &amp Comparative Genomics 02/1997; 2(4):313-21.
  • 01/1997;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related to energy production, cell division, and metabolism in M. jannaschii are most similar to those found in Bacteria, most of the genes involved in transcription, translation, and replication in M. jannaschii are more similar to those found in Eukaryotes.
    Science 09/1996; 273(5278):1058-73. · 31.03 Impact Factor

Publication Stats

12k Citations
383.21 Total Impact Points

Institutions

  • 1995–2003
    • Biomedical Research Institute, Rockville
      Maryland, United States
  • 2001
    • Bristol-Myers Squibb
      New York City, New York, United States
  • 1999
    • Johns Hopkins University
      • Department of Molecular Biology and Genetics
      Baltimore, MD, United States
  • 1996
    • University of Illinois, Urbana-Champaign
      • Department of Microbiology
      Urbana, IL, United States