Mary J Cismowski

Nationwide Children's Hospital, Columbus, Ohio, United States

Are you Mary J Cismowski?

Claim your profile

Publications (25)126.12 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Aortocaval fistula (ACF)-induced volume overload (VO) heart failure (HF) results in progressive left ventricular (LV) dysfunction. Hemodynamic load reversal during pre-HF (4 weeks post-ACF; REV) results in rapid structural but delayed functional recovery. This study investigated myocyte and myofilament function in ACF and REV and tested the hypothesis that a myofilament Ca(2+) sensitizer would improve VO-induced myofilament dysfunction in ACF and REV. Methods and Results. Following the initial Sham or ACF surgery in male Sprague-Dawley rats (200-240g) at Week 0, REV surgery and experiments were performed at Weeks 4 and 8, respectively. In ACF, decreased LV function is accompanied by impaired sarcomeric shortening and force generation and decreased Ca(2+) sensitivity, while in REV, impaired LV function is accompanied by decreased Ca(2+) sensitivity. IV Levo elicited the best inotropic and lusitropic responses and was selected for chronic oral studies. Subsets of ACF and REV rats were given vehicle (Veh; water) or Levo (1 mg/kg) in drinking water from Weeks 4-8. Levo improved systolic (%FS, Ees, PRSW) and diastolic (tau, dP/dtmin) function in ACF and REV. Levo improved Ca(2+) sensitivity without altering the amplitude and kinetics of the intracellular Ca(2+) transient. In ACF-Levo, increased cMyBP-C Ser-273 and Ser-302 and cTnI Ser-23/24 phosphorylation correlated with improved diastolic relaxation, while in REV-Levo, increased cMyBP-C Ser-273 phosphorylation and increased α-to-β-MHC correlated with improved diastolic relaxation. Conclusion. Levo improves LV function, and myofilament composition and regulatory protein phosphorylation likely play a key role in improving function.
    American journal of physiology. Heart and circulatory physiology. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 10(6) ± 0.7 × 10(6) and 1.1 × 10(6) ± 0.2 × 10(6) dyn/cm(2) in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS.
    Journal of Applied Physiology 07/2012; 113(7):1128-40. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.
    Journal of Applied Physiology 09/2011; 111(6):1778-88. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the impact of type 2 diabetes mellitus (DM) on coronary arteriole remodeling. The aim of this study was to determine the mechanisms that underlie coronary arteriole structural remodeling in type 2 diabetic (db/db) mice. Passive structural properties of septal coronary arterioles isolated from 12- to 16-week-old diabetic db/db and control mice were assessed by pressure myography. Coronary arterioles from 12-week-old db/db mice were structurally similar to age-matched controls. By 16 weeks of age, coronary wall thickness was increased in db/db arterioles (p < 0.01), while luminal diameter was reduced (control: 118 ± 5 μm; db/db: 102 ± 4 μm, p < 0.05), augmenting the wall-to-lumen ratio by 58% (control: 5.9 ± 0.6; db/db: 9.5 ± 0.4, p < 0.001). Inward hypertrophic remodeling was accompanied by a 56% decrease in incremental elastic modulus (p < 0.05, indicating decreased vessel coronary wall stiffness) and a ~30% reduction in coronary flow reserve (CFR) in diabetic mice. Interestingly, aortic pulse wave velocity and femoral artery incremental elastic modulus were increased (p < 0.05) in db/db mice, indicating macrovascular stiffness. Molecular tissue analysis revealed increased elastin-to-collagen ratio in diabetic coronaries when compared to control and a decrease in the same ratio in the diabetic aortas. These data show that coronary arterioles isolated from type 2 diabetic mice undergo inward hypertrophic remodeling associated with decreased stiffness and increased elastin-to-collagen ratio which results in a decreased CFR. This study suggests that coronary microvessels undergo a different pattern of remodeling from macrovessels in type 2 DM.
    Archiv für Kreislaufforschung 07/2011; 106(6):1123-34. · 7.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-independent G-protein regulators provide diverse mechanisms for signal input to G-protein-based signaling systems, revealing unexpected functional roles for G-proteins. As part of a broader effort to identify disease-specific regulators for heterotrimeric G-proteins, we screened for such proteins in cardiac hypertrophy using a yeast-based functional screen of mammalian cDNAs as a discovery platform. We report the identification of three transcription factors belonging to the same family, transcription factor E3 (TFE3), microphthalmia-associated transcription factor, and transcription factor EB, as novel receptor-independent activators of G-protein signaling selective for Gα(16). TFE3 and Gα(16) were both up-regulated in cardiac hypertrophy initiated by transverse aortic constriction. In protein interaction studies in vitro, TFE3 formed a complex with Gα(16) but not with Gα(i3) or Gα(s). Although increased expression of TFE3 in heterologous systems had no influence on receptor-mediated Gα(16) signaling at the plasma membrane, TFE3 actually translocated Gα(16) to the nucleus, leading to the induction of claudin 14 expression, a key component of membrane structure in cardiomyocytes. The induction of claudin 14 was dependent on both the accumulation and activation of Gα(16) by TFE3 in the nucleus. These findings indicate that TFE3 and Gα(16) are up-regulated under pathologic conditions and are involved in a novel mechanism of transcriptional regulation via the relocalization and activation of Gα(16).
    Journal of Biological Chemistry 03/2011; 286(20):17766-76. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.
    AJP Cell Physiology 03/2011; 301(1):C242-51. · 3.71 Impact Factor
  • Free Radical Biology and Medicine - FREE RADICAL BIOL MED. 01/2011; 51.
  • Article: Ags1
    AfCS-Nature Molecule Pages 01/2007;
  • Mary J Cismowski
    [Show abstract] [Hide abstract]
    ABSTRACT: G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.
    Seminars in Cell and Developmental Biology 07/2006; 17(3):334-44. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of a broader effort to identify postreceptor signal regulators involved in specific diseases or organ adaptation, we used an expression cloning system in Saccharomyces cerevisiae to screen cDNA libraries from rat ischemic myocardium, human heart, and a prostate leiomyosarcoma for entities that activated G protein signaling in the absence of a G protein coupled receptor. We report the characterization of activator of G protein signaling (AGS) 8 (KIAA1866), isolated from a rat heart model of repetitive transient ischemia. AGS8 mRNA was induced in response to ventricular ischemia but not by tachycardia, hypertrophy, or failure. Hypoxia induced AGS8 mRNA in isolated adult ventricular cardiomyocytes but not in rat aortic smooth muscle cells, endothelial cells, or cardiac fibroblasts, suggesting a myocyte-specific adaptation mechanism involving remodeling of G protein signaling pathways. The bioactivity of AGS8 in the yeast-based assay was independent of guanine nucleotide exchange by Galpha, suggesting an impact on subunit interactions. Subsequent studies indicated that AGS8 interacts directly with Gbetagamma and this occurs in a manner that apparently does not alter the regulation of the effector PLC-beta(2) by Gbetagamma. Mechanistically, AGS8 appears to promote G protein signaling by a previously unrecognized mechanism that involves direct interaction with Gbetagamma.
    Proceedings of the National Academy of Sciences 02/2006; 103(3):797-802. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of AGS proteins as receptor-independent activators of G-protein signaling reveals unexpected mechanisms for the regulation of heterotrimeric G-protein activation and has opened up new areas of research related to the role of G proteins as signal transducers. In addition to their obvious interest associated with G-protein-coupled receptor signaling, AGS proteins might provide alternative binding partners for G-protein subunits that enable them to serve unexpected functions related to cell division, differentiation and organelle structure that might operate independently of a GPCR. Thus, these proteins and the concepts advanced with their discovery highlight the diversity associated with G-protein signaling and present new avenues for the development of therapeutics that target G-protein signaling.
    Trends in Pharmacological Sciences 10/2005; 26(9):470-6. · 9.25 Impact Factor
  • M J Cismowski, S M Lanier
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaring systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with GBgamma. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.
    Ergebnisse der Physiologie 02/2005; 155:57-80. · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AGS1/RASD1 is a Ras-related protein identified as a dexamethasone-inducible cDNA and as a signal regulator in various functional and protein-interaction screens. As an initial approach to define the role of AGS1/RASD1 as a Ras-family member, we determined its influence on cell growth/survival. In clonogenic assays with NIH-3T3 murine fibroblast cells, the MCF-7 human breast cancer cell line and the human lung adenocarcinoma cell line A549, AGS1/RASD1 markedly diminished the number of G418-resistant colonies, whereas the Ras subgroup member K-Ras was without effect. A549 cell infection with adenovirus engineered to express AGS1/RASD1 (Ad.AGS1) inhibited log phase growth in vitro and increased the percentage of cells undergoing apoptosis. The anti-growth action was also observed in vivo as the expression of AGS1/RASD1 inhibited the subcutaneous tumor growth of A549 cells in athymic nude mice. These data indicate that AGS1/RASD1, a member of the Ras superfamily of small G-proteins that often promotes cell growth and tumor expansion, plays an active role in preventing aberrant cell growth.
    Oncogene 08/2004; 23(34):5858-63. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activators of G-protein signaling 1-3 (AGS1-3) were identified in a functional screen of mammalian cDNAs that activated G-protein signaling in the absence of a receptor. We report the isolation and characterization of an additional AGS protein (AGS4) from a human prostate leiomyosarcoma cDNA library. AGS4 is identical to G18.1b, which is encoded by a gene within the major histocompatibility class III region of chromosome 6. The activity of AGS4 in the yeast-based functional screen was selective for G(i2)/G(i3) and independent of guanine-nucleotide exchange by G(i)alpha. RNA blots indicated enrichment of AGS4/G18.1b mRNA in heart, placenta, lung, and liver. Immunocytochemistry with AGS4/G18.1b-specific antisera indicated a predominant nonhomogeneous, extranuclear distribution within the cell following expression in COS7 or Chinese hamster ovary cells. AGS4/G18.1b contains three G-protein regulatory motifs downstream of an amino terminus domain with multiple prolines. Glutathione S-transferase (GST)-AGS4/G18.1b fusion proteins interacted with purified G(i)alpha, and peptides derived from each of the G-protein regulatory motifs inhibited guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to purified G(i)alpha(1). AGS4/G18.1b was also complexed with G(i)alpha(3) in COS7 cell lysates following cell transfection. However, AGS4/G18.1b did not alter the generation of inositol phosphates in COS7 cells cotransfected with the Gbetagamma-regulated effector phospholipase C-beta2. These data suggest either that an additional signal is required to position AGS4/G18.1b in the proper cellular location where it can access heterotrimer and promote subunit dissociation or that AGS4 serves as an alternative binding partner for G(i)alpha independent of Gbetagamma participating in G-protein signaling events that are independent of classical G-protein-coupled receptors at the cell surface.
    Journal of Biological Chemistry 07/2004; 279(26):27567-74. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Ras-related protein, activator of G-protein signaling 1 (AGS1) or Dexras1, interacts with G(i)/G(o)alpha and activates heterotrimeric G-protein signaling systems independent of a G-protein-coupled receptor (GPCR). As an initial approach to further define the cellular role of AGS1 in GPCR signaling, we determined the influence of AGS1 on the regulation of G(betagamma)-regulated inwardly rectifying K(+) channel (GIRK) current (I(ACh)) by M(2)-muscarinic receptor (M(2)-MR) in Xenopus oocytes. AGS1 expression inhibited receptor-mediated current activation by >80%. Mutation of a key residue (G31V) within the G(1) domain involved in nucleotide binding for Ras-related proteins eliminated the action of AGS1. The inhibition of I(ACh) was not overcome by increasing concentrations of the muscarinic agonist acetylcholine but was progressively lost upon injection of increasing amounts of M(2)-MR cRNA. These data suggest that AGS1 may antagonize GPCR signaling by altering the pool of heterotrimeric G-proteins available for receptor coupling and/or disruption of a preformed signaling complex. Such regulation would be of particular importance for those receptors that exist precoupled to heterotrimeric G-protein and for receptors operating within signaling complexes.
    Journal of Biological Chemistry 05/2002; 277(16):13827-30. · 4.65 Impact Factor
  • Methods in Enzymology 02/2002; 344:153-68. · 2.00 Impact Factor
  • Source
    M J Cismowski, M Metodiev, E Draper, D E Stone
    [Show abstract] [Hide abstract]
    ABSTRACT: The mating-specific heterotrimeric G(alpha) protein of Saccharomyces cerevisiae, Gpa1, negatively regulates activation of the pheromone response pathway both by sequestering G(beta)gamma and by triggering an adaptive response through an as yet unknown mechanism. Previous genetic studies identified mutant alleles of GPA1 that downregulate the pheromone response independently of the pheromone receptor (GPA1E364K), or through a receptor-dependent mechanism (GPA1N388D). To further our understanding of the mechanism of action of these mutant alleles, their corresponding proteins were purified and subjected to biochemical analysis. The receptor-dependent activity of Gpa1N388D was further analyzed using yeast strains expressing constitutively active receptor (Ste2) mutants, and C-terminal truncation mutant forms of Gpa1. A combination of G(alpha) affinity chromatography, GTP binding/hydrolysis studies, and genetic analysis allowed us to assign a distinct mechanism of action to each of these mutant proteins.
    Biochemical and Biophysical Research Communications 07/2001; 284(2):247-54. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterotrimeric G-protein signalling systems are primarily activated via cell surface receptors possessing the seven membrane span motif. Several observations suggest the existence of other modes of input to such signalling systems either downstream of effectors or at the level of G-proteins themselves. Using a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae, we identified three proteins, AGS1-3 (for Activators of G-protein Signalling), that activated heterotrimeric G-protein signalling pathways in the absence of a typical receptor. AGS1 defines a distinct member of the super family of ras related proteins. AGS2 is identical to mouse Tctex1, a protein that exists as a light chain component of the cytoplasmic motor protein dynein and subserves as yet undefined functions in cell signalling pathways. AGS3 possesses a series of tetratrico repeat motifs and a series of four amino acid repeats termed G-protein regulatory motifs. The GPR motifs are found in a number of proteins that interact with and regulate Galpha. Although each AGS protein activates G-protein signaling, they do so by different mechanisms within the context of the G-protein activation/deactivation cycle. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signalling pathways.
    Life Sciences 05/2001; 68(19-20):2301-8. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Utilizing a functional screen in the yeast Saccharomyces cerevisiae we identified mammalian proteins that activate heterotrimeric G-protein signaling pathways in a receptor-independent fashion. One of the identified activators, termed AGS1 (for activator of G-protein signaling), is a human Ras-related G-protein that defines a distinct subgroup of the Ras superfamily. Expression of AGS1 in yeast and in mammalian cells results in specific activation of Galpha(i)/Galpha(o) heterotrimeric signaling pathways. In addition, the in vivo and in vitro properties of AGS1 are consistent with it functioning as a direct guanine nucleotide exchange factor for Galpha(i)/Galpha(o). AGS1 thus presents a unique mechanism for signal integration via heterotrimeric G-protein signaling pathways.
    Journal of Biological Chemistry 09/2000; 275(31):23421-4. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.
    Journal of Biological Chemistry 12/1999; 274(47):33202-5. · 4.65 Impact Factor

Publication Stats

796 Citations
126.12 Total Impact Points


  • 2011–2014
    • Nationwide Children's Hospital
      • Center for Cardiovascular and Pulmonary Research
      Columbus, Ohio, United States
    • University of Alabama at Birmingham
      • Department of Cell, Developmental and Integrative Biology (CDIB)
      Birmingham, AL, United States
  • 2004–2011
    • Louisiana State University Health Sciences Center New Orleans
      • • Department of Physiology
      • • Department of Pharmacology and Experimental Therapeutics
      Baton Rouge, LA, United States
  • 2004–2006
    • Northeast Ohio Medical University
      Ravenna, Ohio, United States
  • 1999–2002
    • Medical University of South Carolina
      Charleston, South Carolina, United States
  • 2001
    • University of Illinois at Chicago
      • Department of Biological Sciences
      Chicago, Illinois, United States
  • 1995
    • The Scripps Research Institute
      • Department of Cell and Molecular Biology
      La Jolla, CA, United States