W. D. Cochran

University of Sydney, Sydney, New South Wales, Australia

Are you W. D. Cochran?

Claim your profile

Publications (335)1317.59 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.
    02/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission offers simultaneous observation of thousands of objects at a precision far better than is achievable from the ground. Ecliptic fields will be observed for approximately 75-days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.
    02/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R_earth. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).
    01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Because Kepler has established the preponderance of small, potentially habitable exoplanets, current and upcoming radial velocity (RV) surveys concentrate on finding Earth-mass planets orbiting stars near enough to facilitate detailed follow-up observations. Particularly attractive targets are cool, low mass "M dwarf" stars. Their low masses (and thus higher planetary RV amplitudes) and close-in habitable zones facilitate relatively quick detection of low mass planets in the habitable zone. However, the RV signals of such planets will be obscured by stellar magnetic activity, which is poorly understood for M stars. In an effort to improve the detection capabilities of the Hobby-Eberly Telescope M dwarf planet survey, I have conducted a detailed investigation of the magnetic behavior of our target stars. Here, I present techniques for identifying magnetic activity cycles and rotation periods for old, quiet M stars and evaluating their effects on RV measurements. I will discuss new insights into the magnetic behavior of these stars, and demonstrate some early results of correcting stellar activity in order to reveal exoplanet signals.
    01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOI) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2,738 Kepler planet candidates distributed across 2,017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of the low equilibrium temperature (Teq<300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample.
    12/2013;
  • William D. Cochran, M. Endl, E. J. Brugamyer, P. J. MacQueen
    [show abstract] [hide abstract]
    ABSTRACT: We report the detection of Jovian mass planets orbiting three nearby metal-poor thick disk stars. These discoveries were all made using precise radial velocity measurements from the High Resolution Spectrograph of the Hobby-Eberly Telescope. All of the planets are of Jovian mass or larger, with orbital periods ranging from about a year to over six years. HIP 14342 shows two planetary companions with orbital periods near a 2:1 resonance. The other planets detected orbit HIP 13366 and HIP 109384. All three of these stars are kinematic members of the galactic "thick disk", which is a population of stars with a larger vertical scale height and a larger velocity dispersion that the thin disk to which the Sun belongs. The thick disk stars are of lower total metallicity than the Sun, and are also chemically different than thin disk stars, having the abundances of their alpha-capture elements (e.g. O, Ne, Mg, Si, S, Ca, Ti) enhanced by 0.2 to 0.4 dex over those of thin disk stars of the same [Fe/H]. The majority of planets found among stars with [Fe/H] < ~-0.2 orbit thick disk stars, even though thin disk stars significantly outnumber thick disk stars in this metallicity range. Thus, the enhanced abundance of the alpha-capture elements, which are also key elements in the chemistry of planet-forming materials, may be responsible for the large fraction of low-metallicity thick-disk stars with planetary companions.
    10/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: We announce the discovery of a ~2 Jupiter-mass planet in an eccentric 11-year orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years' worth of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m/s. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.
    The Astrophysical Journal 07/2013; 774(2). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present the detection of five planets-Kepler-62b, c, d, e, and f-of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets (Kepler-62e and -62f) are super-Earth-size (1.25 < planet radius ≤ 2.0 R⊕) planets in the habitable zone (HZ) of their host star, receiving 1.2 ± 0.2 and 0.41 ± 0.05 times the solar flux at Earth's orbit (S⊙). Theoretical models of Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.
    Science 04/2013; · 31.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Combined results are now available from a 15 year long search for Jupiter analogues around solar-type stars using the ESO CAT + CES, ESO 3.6 m + CES, and ESO 3.6 m + HARPS instruments. They comprise planet (co-)discoveries (ι Hor and HR 506) and confirmations (three planets in HR 3259) as well as non-confirmations of planets (HR 4523 and ɛ Eri) announced elsewhere. A long-term trend in ɛ Ind found by our survey is probably attributable to a Jovian planet with a period >30 yr, but we cannot fully exclude stellar activity effects as the cause. A 3.8 year periodic variation in HR 8323 can be attributed to stellar activity.
    04/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.
    Nature 02/2013; 494(7438):452-4. · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Results on the obliquity of exoplanet host stars -- the angle between the stellar spin axis and the planetary orbital axis -- provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler Mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1-sigma level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favoured in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.
    The Astrophysical Journal 02/2013; 766(2). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3-sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by ~90 degrees with optical depths >~5*10^-6, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.
    The Astrophysical Journal 01/2013; · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Planets embedded within exozodiacal dust disks may form large scale clumpy dust structures by trapping dust into resonant orbits. When viewed edge-on, these clumpy dust structures periodically pass in front of their host star, creating orbit-long light curve variations potentially detectable with Kepler. Here I present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of planet candidate host stars identified by the Kepler mission. Our detection routine produced one promising candidate disk structure associated with a hot Jupiter planet candidate. However, radial velocity measurements show this planet candidate to be an eclipsing binary with an unusual periodic signal. We use our null result to place an upper limit on the frequency of high contrast resonant dust clumps, a useful metric for future missions that aim to image extrasolar planets in the inner regions of their planetary systems.
    01/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find previously reported trends to be smaller for Beta Hyi and not present for Alp Men. The candidate planet Eps Eri b was not detected despite our better precision. Also the planet announced for HR 4523 cannot be confirmed. Long-term trends in several of our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for the binary HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For some other stars the variations could be attributed to stellar activity. The occurrence of two Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets with periods smaller than 10 yr around solar-like stars. We have not detected a Jupiter analogue, while the detections limits for circular orbits indicate at 5 AU a sensitivity for minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.
    Astronomy and Astrophysics 11/2012; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Through the McDonald Observatory M Dwarf Planet Search, we have acquired nearly 3,000 high-resolution spectra of 93 late-type (K5-M5) stars over more than a decade using HET/HRS. This sample provides a unique opportunity to investigate the occurrence of long-term stellar activity cycles for low-mass stars. In this paper, we examine the stellar activity of our targets as reflected in the H-alpha feature. We have identified periodic signals for 6 stars, with periods ranging from days to more than 10 years, and find long-term trends for 7 others. Stellar cycles with P > 1 year are present for at least 5% of our targets. Additionally, we present an analysis of the time-averaged activity levels of our sample, and search for correlations with other stellar properties. In particular, we find that more massive, earlier type (M0-M2) stars tend to be more active than later type dwarfs. Furthermore, high-metallicity stars tend to be more active at a given stellar mass. We also evaluate H-alpha variability as a tracer of activity-induced radial velocity (RV) variation. For the M dwarf GJ 1170, H-alpha variation reveals stellar activity patterns matching those seen in the RVs, mimicking the signal of a giant planet, and we find evidence that the previously identified stellar activity cycle of GJ 581 may be responsible for the recently retracted planet f (Vogt et al. 2012) in that system. In general, though, we find that H-alpha is not frequently correlated with RV at the precision (typically 6-7 m/s) of our measurements.
    The Astrophysical Journal 11/2012; 764(1). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The catalogue is composed of radial velocity timeseries for 31 stars obtained with three instruments (CES+LC,CES+VLC,HARPS). Additionally the HARPS timeseries include activity indicators (logR'HK and Bisector span, FWHM, and Contrast of the cross correlation function). (4 data files).
    VizieR Online Data Catalog. 11/2012;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report the radial-velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P~55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of ~7.5 years with a low eccentricity and an Msini of ~3.4 MJup. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS) effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost eight years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8-m Automatic Photoelectric Telescope (APT) and the Microvariability and Oscillations of Stars (MOST) satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at >>10sigma, and exclude any transit with an impact parameter b>0.951 at greater than 5sigma. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We found consistency between our orbital parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.
    The Astrophysical Journal 10/2012; 761(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.
    Science 08/2012; 337(6101):1511-4. · 31.20 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present a mass determination for the transiting super-Earth rho 1 Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories (Fischer et al. 2008). We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) for the original discovery of rho 1 Cancri e. Using this large data set we obtain a 5-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 +/- 0.21 m/s for rho 1 Cnc e and determine a mass of 8.37 +/- 0.38 M_Earth. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star (Winn et al. 2011, Demory et al. 2011), which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al. (2012), we obtain a mean density of rho = 4.50 +/- 0.20 g/cm^3. The location of rho 1 Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volitales, possibly a water-rich envelope surrounding a rocky core.
    The Astrophysical Journal 08/2012; 759(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masses (7.11 Neptune masses or 0.384 Jupiter masses) at 95% confidence. This upper limit should decrease as more Kepler data become available.
    The Astrophysical Journal 08/2012; 758(2). · 6.73 Impact Factor

Publication Stats

1k Citations
1,317.59 Total Impact Points

Institutions

  • 2013
    • University of Sydney
      • School of Physics
      Sydney, New South Wales, Australia
  • 1980–2013
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 2012
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
    • San Diego State University
      • Department of Astronomy
      San Diego, CA, United States
  • 2011
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2010
    • SETI Institute
      Mountain View, California, United States
  • 2008
    • University of Hawaiʻi at Mānoa
      • Institute of Astronomy
      Honolulu, Hawaii, United States
  • 2004
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States
  • 1991
    • Rice University
      Houston, Texas, United States