Publications (2)10.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the thorough characterisation of a new transgenic mouse line overexpressing the 695-amino acid isoform of human amyloid precursor protein harbouring the Swedish double familial Alzheimer's disease mutation. This line, referred to as TAS10, exhibits neuropathological features and cognitive deficits that are closely correlated to the accumulation of Abeta in their brain and that are reminiscent of those observed in AD. Data on the TAS10 line are presented at five time points: 2, 6, 12, 18 and 24 months in a longitudinal study. The TAS10 line is characterised by the following changes: i) significant age-related increases in the levels of total and individual species (1-40, 1-42) of beta-amyloid in the brains of transgenics compared with non-transgenic littermates; ii) transgenic mice showed pronounced spatial learning deficits in the Morris water maze at 6 months and working memory deficits by 12 months; iii) amyloid plaque and associated pathologies were observed by the 12-month time point and the burden increased substantially, particularly in the cortex, by 18 months; iv) electron microscopy of the hippocampus of transgenic mice showed evidence of abnormal ultrastructural features such as dystrophic neurites and lipid deposits that developed from 6 months and increased in number and severity with age. Morphometric studies demonstrate that the synapse to neuron ratio is higher in transgenics than in control mice at 12 months, but this ratio decreases as they age and synapse size increases. Thus, this mouse model exhibits a close correlation of amyloid burden with behavioural deficits and ultrastructural abnormalities and so represents an ideal system to study the mechanisms underlying the impact of amyloid pathology on CNS function.
    Neuroscience 02/2003; 122(1):213-28. DOI:10.1016/S0306-4522(03)00389-0 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a disorder of two pathologies: amyloid plaques, the core of which is a peptide derived from the amyloid precursor protein (APP), and neurofibrillary tangles composed of highly phosphorylated tau. Protein kinase C (PKC) is known to increase non-amyloidogenic alpha-secretase cleavage of APP, producing secreted APP (sAPPalpha), and glycogen synthase kinase (GSK)-3beta is known to increase tau phosphorylation. Both PKC and GSK-3beta are components of the wnt signaling cascade. Here we demonstrate that overexpression of another member of this pathway, dishevelled (dvl-1), increases sAPPalpha production. The dishevelled action on APP is mediated via both c-jun terminal kinase (JNK) and protein kinase C (PKC)/mitogen-activated protein (MAP) kinase but not via p38 MAP kinase. These data position dvl-1 upstream of both PKC and JNK, thereby explaining the previously observed dual signaling action of dvl-1. Furthermore, we show that human dvl-1 and wnt-1 also reduce the phosphorylation of tau by GSK-3beta. Therefore, both APP metabolism and tau phosphorylation are potentially linked through wnt signaling.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 08/2001; 21(14):4987-95. · 6.75 Impact Factor