F. F. S. van der Tak

University of Groningen, Groningen, Groningen, Netherlands

Are you F. F. S. van der Tak?

Claim your profile

Publications (95)61.82 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: (Abridged) We study the response of the gas to energetic processes associated with high-mass star formation and compare it with studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The far-IR line emission and absorption of CO, H$_2$O, OH, and [OI] reveals the excitation and the relative contribution of different species to the gas cooling budget. Herschel-PACS spectra covering 55-190 um are analyzed for ten high-mass star forming regions of various luminosities and evolutionary stages at spatial scales of ~10^4 AU. Radiative transfer models are used to determine the contribution of the envelope to the far-IR CO emission. The close environments of high-mass YSOs show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines. CO lines from J=14-13 up to typically 29-28 show a single temperature component, Trot~300 K. Typical H$_2$O temperatures are Trot~250 K, while OH has Trot~80 K. Far-IR line cooling is dominated by CO (~75 %) and to a smaller extent by OI (~20 %), which increases for the most evolved sources. H$_2$O is less important as a coolant for high-mass sources because many lines are in absorption. Emission from the envelope is responsible for ~45-85 % of the total CO luminosity in high-mass sources compared with only ~10 % for low-mass YSOs. The highest-J lines originate most likely from shocks, based on the strong correlation of CO and H$_2$O with physical parameters of the sources from low- to high-masses. Excitation of warm CO is very similar for all mass regimes, whereas H$_2$O temperatures are ~100 K higher for high-mass sources than the low-mass YSOs. Molecular cooling is ~4 times more important than cooling by [OI]. The total far-IR line luminosity is about 10$^{-3}$ and 10$^{-5}$ times lower than the dust luminosity for the low- and high-mass YSOs.
    11/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, compare their HDO abundance distribution with other star-forming regions and constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component as well as a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11} respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10} respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.
    10/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: [Context] Two competing models describe the formation of massive stars in objects like the Orion Trapezium. In the turbulent core accretion model, the resulting stellar masses are directly related to the mass distribution of the cloud condensations. In the competitive accretion model, the gravitational potential of the protocluster captures gas from the surrounding cloud for which the individual cluster members compete. [Aims] With high resolution submillimeter observations of the structure, kinematics, and chemistry of the proto-Trapezium cluster W3 IRS5, we aim to determine which mode of star formation dominates. [Methods] We present 354 GHz Submillimeter Array observations at resolutions of 1"-3" (1800-5400 AU) of W3 IRS5. ...... [Results] The observations show five emission peaks (SMM1-5). SMM1 and SMM2 contain massive embedded stars (~20 Msun); SMM3-5 are starless or contain low-mass stars (<8 Msun). The inferred densities are high, >= 10^7 cm^-3, but the core masses are small, 0.2-0.6 Msun. The detected molecular emission reveals four different chemical zones. ...... [Conclusions] The proto-Trapezium cluster W3 IRS5 is an ideal test case to discriminate between models of massive star formation. Either the massive stars accrete locally from their local cores; in this case the small core masses imply that W3 IRS5 is at the very end stages (1000 yr) of infall and accretion, or the stars are accreting from the global collapse of a massive, cluster forming core. We find that the observed masses, densities and line widths observed toward W3 IRS 5 and the surrounding cluster forming core are consistent with the competitive accretion of gas at rates of Macc~10^-4 Msun yr^-1 by the massive young forming stars. ......
    08/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL2591 using space-based far-infrared observations of linear rotor molecules. Rotational spectral line signatures of CO, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30m spectra, cover transitions with E(up)/k between 5 and ~300 K (750K for 12C16O, using selected frequency settings up to 1850 GHz). The resolved spectral line profiles are used to separate and study various kinematic components. The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level, qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as E(up)/k increases from <50 to 700K. We constrain the following: n(H2)~10^5-10^6 cm^-3 and T~60-200K for the outflow gas; T=9-17K and N(H2)~3x10^21 cm^-2 for a known foreground absorption cloud; N(H2)<10^19 cm^-2 for a second foreground component. Our spherical envelope radiative transfer model systematically underproduces observed line emission at E(up)/k > 150 K for all species. This indicates that warm gas should be added to the model and that the model's geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (<10 km/s) outflow component consists of recently swept-up gas.
    03/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Context; Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate- or high-mass star-forming regions. As part of the "Water In Star-forming regions with Herschel" (WISH) key program, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10^5 L_sol. Aims; We analyse the CO line emission towards a large sample of protostars in terms of both line intensities and profiles. Methods; Herschel-HIFI spectra of the 12CO 10-9, 13CO 10-9 and C18O 5-4, 9-8 and 10-9 lines are analysed for a sample of 51 YSOs. In addition, JCMT spectra of 12CO 3-2 and C18O 3-2 extend this analysis to cooler gas components. Results; All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs. This relation can be extended to larger (extragalactic) scales. The majority of the detected 12CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the C18O spectra are mainly fitted with a single Gaussian. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad 12CO 3-2 and 10-9 velocity components correlate with those of the narrow C18O 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range.
    Astronomy and Astrophysics 01/2013; 553(125). · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present Herschel/HIFI observations of 30 transitions of water isotopologues toward the high-mass star forming region NGC 6334 I. The line profiles of H_2^{16}O, H_2^{17}O, H_2^{18}O, and HDO show a complex pattern of emission and absorption components associated with the embedded hot cores, a lower-density envelope, two outflow components, and several foreground clouds, some associated with the NGC 6334 complex, others seen in projection against the strong continuum background of the source. Our analysis reveals an H2O ortho/para ratio of 3 +/- 0.5 in the foreground clouds, as well as the outflow. The water abundance varies from ~10^{-8} in the foreground clouds and the outer envelope to ~10^{-6} in the hot core. The hot core abundance is two orders of magnitude below the chemical model predictions for dense, warm gas, but within the range of values found in other Herschel/HIFI studies of hot cores and hot corinos. This may be related to the relatively low gas and dust temperature (~100 K), or time dependent effects, resulting in a significant fraction of water molecules still locked up in dust grain mantles. The HDO/H_2O ratio in NGC 6334 I, ~2 10^{-4}, is also relatively low, but within the range found in other high-mass star forming regions.
    12/2012;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The abundances of interstellar CH+ and SH+ are not well understood as their most likely formation channels are highly endothermic. Using data from Herschel, we study the formation of CH+ and SH+ in a typical high UV-illumination photon-dominated region (PDR), the Orion Bar. Herschel/HIFI provides velocity-resolved data of CH+ 1-0 and 2-1 and three hyperfine transitions of SH+. Herschel/PACS provides information on the excitation and spatial distribution of CH+ (up to J=6-5). The widths of the CH+ 2-1 and 1-0 transitions are of ~5 km/s, significantly broader than the typical width of dense gas tracers in the Orion Bar (2-3 km/s) and are comparable to the width of tracers of the interclump medium such as C+ and HF. The detected SH+ transitions are narrower compared to CH+ and have line widths of 3 km/s, indicating that SH+ emission mainly originates in denser condensations. Non-LTE radiative transfer models show that electron collisions affect the excitation of CH+ and SH+, and that reactive collisions need to be taken into account to calculate the excitation of CH+. Comparison to PDR models shows that CH+ and SH+ are tracers of the warm surface region (AV<1.5) of the PDR with temperatures between 500-1000 K. We have also detected the 5-4 transition of CF+ (FWHM=1.9 km/s) with an intensity that is consistent with previous observations of lower-J CF+ transitions toward the Orion Bar. A comparison to PDR models indicate that the internal vibrational energy of H2 can explain the formation of CH+ for typical physical conditions in the Orion Bar near the ionization front. H2 vibrational excitation is the most likely explanation of SH+ formation as well. The abundance ratios of CH+ and SH+ trace the destruction paths of these ions, and through that, indirectly, the ratios of H, H2 and electron abundances as a function of depth into the cloud.
    Astronomy and Astrophysics 12/2012; 550(96). · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recently, we introduced detailed isotopic chemistry into the KOSMA-tau model for photon-dominated regions (PDRs) to give theoretical predictions for the abundance of the carbon isotopologues as a function of PDR parameters. Combined with radiative transfer computations for specific geometries, we estimated the possible intensity ratio of the [CII]/[13CII] lines. Here, we compare these predictions with new observations. We performed Herschel/HIFI observations of the [CII] 158micron line in a number of PDRs. In all sources we observed at least two hyperfine components of the [13CII] transition allowing to determine the [CII]/[13CII] intensity ratio, after some revision of the intrinsic hyperfine ratios. Comparing the intensity ratios with the results from the updated KOSMA-tau model, we identify cases dominated by chemical fractionation and cases dominated by the optical depth of the main isotopic line. An observable enhancement of the [CII]/[13CII] intensity ratio due to chemical fractionation depends mostly on geometry and velocity structure, and less on the gas density and radiation field. In our observations the [CII]/[13CII] ratio for the integrated line intensity was always dominated by the optical depth of the main isotopic line. However, an enhanced intensity ratio is found for particular velocity components in a few sources: the red-shifted material in the ultracompact HII region Mon R2, the wings of the turbulent profile in the Orion Bar, and possibly a blue wing in NGC7023. The mapping of the [13CII] lines in the Orion Bar allows to derive a C+ column density map confirming the temperature stratification of the C+ layer, in agreement with the chemical stratification of the Bar. The C+ column densities for all sources show that at the position of the [CII] peak emission, a dominant fraction of the gas-phase carbon is in the form of C+.
    11/2012;
  • Source
    K. -S. Wang, F. F. S. van der Tak, M. R. Hogerheijde
    [show abstract] [hide abstract]
    ABSTRACT: [Context] Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. [Aims] This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. [Methods] We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20000 Lsun) high-mass (10-16 Msun) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. [Results] At ~0.5" (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~ 800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H218O from the warm mid-layer, and SO2 from the upper disk. [Conclusions] We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion [...]
    04/2012;
  • Source
    Z. Nagy, F. F. S. van der Tak, G. A. Fuller, M. Spaans, R. Plume
    [show abstract] [hide abstract]
    ABSTRACT: The star formation rates in starburst galaxies are orders of magnitude higher than in local star-forming regions, and the origin of this difference is not well understood. We use sub-mm spectral line maps to characterize the physical conditions of the molecular gas in the luminous Galactic star-forming region W49A and compare them with the conditions in starburst galaxies. We probe the temperature and density structure of W49A using H_2CO and HCN line ratios over a 2'x2' (6.6x6.6 pc) field with an angular resolution of 15" (~0.8 pc) provided by the JCMT Spectral Legacy Survey. We analyze the rotation diagrams of lines with multiple transitions with corrections for optical depth and beam dilution, and estimate excitation temperatures and column densities. Comparing the observed line intensity ratios with non-LTE radiative transfer models, our results reveal an extended region (about 1'x1', equivalent to ~3x3 pc at the distance of W49A) of warm (> 100 K) and dense (>10^5 cm^-3) molecular gas, with a mass of 2x10^4 - 2x10^5 M_Sun (by applying abundances derived for other regions of massive star-formation). These temperatures and densities in W49A are comparable to those found in clouds near the center of the Milky Way and in starburst galaxies. The highly excited gas is likely to be heated via shocks from the stellar winds of embedded, O-type stars or alternatively due to UV irradiation, or possibly a combination of these two processes. Cosmic rays, X-ray irradiation and gas-grain collisional heating are less likely to be the source of the heating in the case of W49A.
    Astronomy and Astrophysics 04/2012; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O2, and water, H2O. Contrary to expectation, the space missions SWAS and Odin found only very small amounts of water vapour and essentially no O2 in the dense star-forming interstellar medium. Only toward rho Oph A did Odin detect a weak line of O2 at 119 GHz in a beam size of 10 arcmin. A larger telescope aperture such as that of the Herschel Space Observatory is required to resolve the O2 emission and to pinpoint its origin. We use the Heterodyne Instrument for the Far Infrared aboard Herschel to obtain high resolution O2 spectra toward selected positions in rho Oph A. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. The 487.2GHz line was clearly detected toward all three observed positions in rho Oph A. In addition, an oversampled map of the 773.8GHz transition revealed the detection of the line in only half of the observed area. Based on their ratios, the temperature of the O2 emitting gas appears to vary quite substantially, with warm gas (> 50 K) adjacent to a much colder region, where temperatures are below 30 K. The exploited models predict O2 column densities to be sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these model, the observationally determined O2 column densities seem not to depend strongly on the derived gas temperatures, but fall into the range N(O2) = (3 to >6)e15/cm^2. Beam averaged O2 abundances are about 5e-8 relative to H2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz of about 4 - 5 arcmin, encompassing the entire rho Oph A core.
    Astronomy and Astrophysics 02/2012; 541:73. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The clumpy density structure of photon-dominated regions is well established, but the physical properties of the clumps and of the surrounding interclump medium are only approximately known. The aim of this paper is to constrain the physical and chemical conditions in the Orion Bar, a prototypical nearby photon-dominated region. We present observations of the HF J=1-0 line, which appears in emission toward the Orion Bar, and compare the brightness of the line to non-LTE radiative transfer calculations. The large width of the HF line suggests an origin of the emission in the interclump gas, but collisional excitation by H2 in the interclump gas underpredicts the observed line intensity by factors of 3-5. In contrast, an origin of the line in the dense clumps requires a density of ~10^9 cm^-3, 10-100 times higher than previous estimates, which is unlikely. However, electron impact excitation reproduces our observations for T = 100 K and n(e) = 10 cm^-3, as expected for the interclump gas. We conclude that HF emission is a signpost of molecular gas with a high electron density. Similar conditions may apply to active galactic nuclei where HF also appears in emission.
    Astronomy and Astrophysics 12/2011; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: OH is an important molecule in the H2O chemistry and the cooling budget of star-forming regions. The goal of the Herschel key program `Water in Star-forming regions with Herschel' (WISH) is to study H2O and related species during protostellar evolution. Our aim in this letter is to assess the origin of the OH emission from star-forming regions and constrain the properties of the emitting gas. High-resolution observations of the OH 2Pi1/2 J = 3/2-1/2 triplet at 1837.8 GHz (163.1 micron) towards the high-mass star-forming region W3 IRS 5 with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel reveal the first hyperfine velocity-resolved OH far-infrared spectrum of a star-forming region. The line profile of the OH emission shows two components: a narrow component (FWHM approx. 4-5 km/s) with partially resolved hyperfine structure resides on top of a broad (FWHM approx. 30 km/s) component. The narrow emission agrees well with results from radiative transfer calculations of a spherical envelope model for W3 IRS 5 with a constant OH abundance of approx. 8e-9. Comparison with H2O yields OH/H2O abundance ratios of around 1e-3 for T > 100 K and around unity for T < 100K, consistent with the current picture of the dense cloud chemistry with freeze-out and photodesorption. The broad component is attributed to outflow emission. An abundance ratio of OH/H2O > 0.028 in the outflow is derived from comparison with results of water line modeling. This ratio can be explained by a fast J-type shock or a slower UV-irradiated C-type shock.
    05/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The understanding of the formation process of massive stars (>8 Msun) is limited, due to theoretical complications and observational challenges. We investigate the physical structure of the large-scale (~10^4-10^5 AU) molecular envelope of the high-mass protostar AFGL2591 using spectral imaging in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160 spectral features, this paper uses the 35 that are spatially resolved. The observed spatial distributions of a selection of six species are compared with radiative transfer models based on a static spherically symmetric structure, a dynamic spherical structure, and a static flattened structure. The maps of CO and its isotopic variations exhibit elongated geometries on scales of ~100", and smaller scale substructure is found in maps of N2H+, o-H2CO, CS, SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all molecular lines presented here, except SO, SO2, and H2CO. We find two emission peaks in warm (Eup~200K) methanol separated by 12", indicative of a secondary heating source in the envelope. The spherical models are able to explain the distribution of emission for the optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and CS, nor for the optically thin C17O. The introduction of velocity structure mitigates the optical depth effects, but does not fully explain the observations, especially in the spectral dimension. A static flattened envelope viewed at a small inclination angle does slightly better. We conclude that a geometry of the envelope other than an isotropic static sphere is needed to circumvent line optical depth effects. We propose that this could be achieved in envelope models with an outflow cavity and/or inhomogeneous structure at scales smaller than ~10^4 AU. The picture of inhomogeneity is supported by observed substructure in at least six species.
    Astronomy & Astrophysics - ASTRON ASTROPHYS. 01/2011; 532.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have examined methanol emission from Orion KL with of the {\em Herschel}/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated $\Delta$J$=$0, K$=-4\rightarrow$-3, v$_t$$=$0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the $\Delta$J$=$0, K$=7\rightarrow$6, v$_t$$=$0 Q branch transitions which are mostly blended. We have used the isolated E-type v$_t$$=$0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI's high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars.
    01/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The reactive molecular ions, OH+, H2O+, and H3O+, key probes of the oxygen chemistry of the interstellar gas, have been observed toward Orion KL with the Heterodyne Instrument for Far Infrared on board the Herschel Space Observatory. All three N = 1 - 0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111 - 000 transition at 1115 and 1139 GHz were detected, and an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blue shifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 x 1012 cm-2 and 7 ± 2 x 1012 cm-2, and those in the outflow of 1.9 ± 0.7 x 1013 cm-2 and 1.0 ± 0.3 x 1013 cm-2. Upper limits of 2.4 x 1012 cm-2 and 8.7 ± 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. A higher gas density, despite the assumption of a large ionization rate, may explain the comparatively low column densities of the ions. A part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Copyright 2010© California Institute of Technology. All rights reserved.
    Astronomy and Astrophysics, v.521 (2010). 01/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: W49A is a giant molecular cloud which harbors some of the most luminous embedded clusters in the Galaxy. However, the explanation for this starburst-like phenomenon is still under debate. Methods. We investigated large-scale Spitzer mid-infrared images together with a Galatic Ring Survey 13CO J = 1-0 image, complemented with higher resolution (~ 11 arcsec) 13CO J = 2-1 and C18O J = 2-1 images over a ~ 15 x 13 pc^2 field obtained with the IRAM 30m telescope. Two expanding shells have been identified in the mid-infrared images, and confirmed in the position-velocity diagrams made from the 13CO J = 2-1 and C18O J = 2-1 data. The mass of the averaged expanding shell, which has an inner radius of ~ 3.3 pc and a thickness of ~ 0.41 pc, is about 1.9 x 10^4 M*. The total kinetic energy of the expanding shells is estimated to be ~ 10^49 erg which is probably provided by a few massive stars, whose radiation pressure and/or strong stellar winds drive the shells. The expanding shells are likely to have a common origin close to the two ultracompact Hii regions (source O and source N), and their expansion speed is estimated to be ~ 5 km/s, resulting in an age of ~ 3-7 x 10^5 years. In addition, on larger (~ 35 x 50 pc^2) scales, remnants of two gas ejections have been identified in the 13CO J = 1 - 0 data. Both ejections seem to have the same center as the expanding shells with a total energy of a few times 10^50 erg. The main driving mechanism for the gas ejections is unclear, but likely related to the mechanism which triggers the starburst in W49A.
    11/2010;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims: We study the distribution of dust continuum and H2O and 13CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region. Methods: Herschel-HIFI spectra near 1100 GHz show narrow 13CO 10-9 emission and H2O 111-000 absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results: The dust continuum emission is extended over 36” FWHM, while the 13CO and H2O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10-10 for H2O and ~8×10-7 for 13CO in the dense core, and higher H2O abundances of ~4×10-9 in the foreground cloud and ~7×10-7 in the outflow. Conclusions: The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud.
    Astronomy and Astrophysics 11/2010; 518(107). · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7x10^-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with Herschel HIFI toward two starless cores: B68, a Bok globule, and L1544, a prestellar core embedded in the Taurus molecular cloud complex. The rms in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s^-1. The continuum level is 3.5+/-0.2 mK in B68 and 11.4+/-0.4 mK in L1544. No significant feature is detected in B68 and the 3 sigma upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5x10^13 cm^-2, or a fractional abundance x(o-H2O) < 1.3x10^-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5 sigma level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8+/-4)x10^12 cm^-2. The corresponding fractional abundance is x(o-H2O) ~ 5x10^-9 at radii > 7000 AU and ~2x10^-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ~10^-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Herschel has provided the first measurement of water vapor in dark regions. Prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) are very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds.
    Astronomy and Astrophysics 11/2010; 521. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Water in Star-forming regions with Herschel (WISH) is a Herschel Key Program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature chemistry connects OH and H2O through the OH + H2 <-> H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O. High-resolution spectroscopy of the OH 163.12 micron triplet towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel. The low- and intermediate-mass YSOs HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) in four transitions of OH and two [OI] lines. The OH transitions at 79, 84, 119, and 163 micron and [OI] emission at 63 and 145 micron were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 micron was detected in absorption. With HIFI, the 163.12 micron was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM > 11 km/s) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [OI] flux and the bolometric luminosity. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources.
    Astronomy and Astrophysics 11/2010; 521(36). · 5.08 Impact Factor

Publication Stats

461 Citations
899 Downloads
61.82 Total Impact Points

Institutions

  • 2011
    • University of Groningen
      Groningen, Groningen, Netherlands
  • 2006–2010
    • Netherlands Institute for Space Research, Utrecht
      Utrecht, Utrecht, Netherlands
  • 2008
    • University of Toledo
      Toledo, Ohio, United States
  • 2007
    • GGD Groningen
      Groningen, Groningen, Netherlands
  • 2002–2004
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany