F. F. S. van der Tak

University of Groningen, Groningen, Groningen, Netherlands

Are you F. F. S. van der Tak?

Claim your profile

Publications (102)101.32 Total impact

  • Y. Choi, F. F. S. van der Tak, E. F. van Dishoeck, F. Herpin, F. Wyrowski
    [Show abstract] [Hide abstract]
    ABSTRACT: Water is a sensitive tracer of physical conditions in star-forming regions because of its large abundance variations between hot and cold regions. We use spectrally resolved observations of rotational lines of H$_2$O and its isotopologs with Herschel/HIFI to constrain the physical conditions of the water emitting region toward the high-mass protostar AFGL2591. We use analytical estimates and rotation diagrams to estimate T$_{ex}$ and column densities of H$_2$O of the envelope, the outflow, and a foreground cloud. Furthermore, we use the non-LTE radiative transfer code to estimate the temperature and volume density of the H$_2$O emitting gas. Assuming LTE, we estimate an T$_{ex}$ of 42 K and a column density of 2$\times$10$^{14}$ cm$^{-2}$ for the envelope and 45 K and 4$\times$10$^{13}$ cm$^{-2}$ for the outflow, in beams of 4" and 30", respectively. Non-LTE models indicate a kinetic temperature of 60-230 K and a volume density of 7$\times$10$^6$-10$^8$ cm$^{-3}$ for the envelope, and a kinetic temperature of 70-90 K and a gas density of 10$^7$-10$^8$ cm$^{-3}$ for the outflow. The o/p ratio of the foreground absorption is 1.9$\pm$0.4, suggesting a low temperature. In contrast, the o/p ratio seen in absorption by the outflow is 3.5$\pm$1.0, as expected for warm gas. The water abundance in the envelope is 10$^{-9}$, similar to the low values found for other high- and low-mass protostars, suggesting that this abundance is constant during the embedded phase of high-mass star formation. The water abundance in the outflow is 10$^{-10}$, which is 10$\times$ lower than in the envelope and in the outflows of high- and low-mass protostars. Since beam size effects can only increase this estimate by a factor of 2, we suggest that the water in the outflow is affected by dissociating UV radiation due to the low extinction in the outflow lobe.
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (zeta_H) and molecular hydrogen fraction, f(H2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f(H2) in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042+-0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer zeta_H throughout our sample, and find a log-normal distribution with mean log(zeta_H)=-15.75, (zeta_H=1.78x10^-16 s^-1), and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H3+ observations. Ionization rates in the Galactic center tend to be 10--100 times larger than found in the Galactic disk, also in accord with prior studies.
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present \textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$\,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$\,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200\,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30\,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
    09/2014;
  • Source
    Y. Choi, F. F. S. van der Tak, E. A. Bergin, R. Plume
    [Show abstract] [Hide abstract]
    ABSTRACT: The ortho-to-para ratio (OPR) of H$_2$O is thought to be sensitive to the temperature of water formation. The OPR of H$_2$O is thus useful to study the formation mechanism of water. We investigate the OPR of water in the Orion PDR (Photon-dominated region), at the Orion Bar and Orion S positions, using data from {\it Herschel}/HIFI. We detect the ground-state lines of ortho- and para-H$_2$$^{18}$O in the Orion Bar and Orion S and we estimate the column densities using LTE and non-LTE methods. Based on our calculations, the ortho-to-para ratio (OPR) in the Orion Bar is 0.1 $-$ 0.5, which is unexpectedly low given the gas temperature of $\sim$ 85 K, and also lower than the values measured for other interstellar clouds and protoplanetary disks. Toward Orion S, our OPR estimate is below 2. This low OPR at 2 positions in the Orion PDR is inconsistent with gas phase formation and with thermal evaporation from dust grains, but it may be explained by photodesorption.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.
    Astronomy and Astrophysics 06/2014; 569. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI instrument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.
    05/2014;
  • Source
    Z. Nagy, V. Ossenkopf, F. F. S. Van der Tak, A. Faure, Z. Makai, E. A. Bergin
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the spatial distribution and abundance of C2H in the prototypical high UV-illumination PDR, the Orion Bar. We analyse Herschel/HIFI maps of C2H, CH, and HCO+, and a NANTEN map of [CI]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Five rotational transitions of C2H (from N=6-5 up to N=10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a rotation diagram analysis gives a rotation temperature of 67 K and a C2H column density of 5x10^13 cm^-2. A non-LTE radiative transfer model with a C2H column density of 10^14 cm^-2, an H2 volume density of 10^6 cm^-3, a kinetic temperature of 400 K, and an electron density of 10 cm^-3 is required to fit the two highest rotational transitions of C2H. This model gives a reasonable fit to the lower-N transitions as well, however, the N=6-5,...,8-7 transitions are more consistent with lower kinetic temperatures and H2 volume densities (Tkin~150 K and n(H2)=5x10^5 cm^-3). A comparison of the spatial distribution of C2H to those of CH, HCO+, and [CI] shows the best correlation with CH. For Orion Bar conditions, C2H traces a relatively narrow region at intermediate depths, equivalent to visual extinctions between 0.5 and 2 in a model with a pressure of 10^8 cm^-3 K. This region is part of the region where the CH abundances peak, which makes CH a relatively good tracer of C2H. This is supported by the spatial correlation seen in the observations. The spatial distribution of the observed species compared to PDR models suggests a high-pressure model (~10^8 cm^-3 K) for the Orion Bar, similar to CH+, SH+, and OH+. The Orion Ridge is more consistent with a lower pressure model.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We study the response of the gas to energetic processes associated with high-mass star formation and compare it with studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The far-IR line emission and absorption of CO, H$_2$O, OH, and [OI] reveals the excitation and the relative contribution of different species to the gas cooling budget. Herschel-PACS spectra covering 55-190 um are analyzed for ten high-mass star forming regions of various luminosities and evolutionary stages at spatial scales of ~10^4 AU. Radiative transfer models are used to determine the contribution of the envelope to the far-IR CO emission. The close environments of high-mass YSOs show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines. CO lines from J=14-13 up to typically 29-28 show a single temperature component, Trot~300 K. Typical H$_2$O temperatures are Trot~250 K, while OH has Trot~80 K. Far-IR line cooling is dominated by CO (~75 %) and to a smaller extent by OI (~20 %), which increases for the most evolved sources. H$_2$O is less important as a coolant for high-mass sources because many lines are in absorption. Emission from the envelope is responsible for ~45-85 % of the total CO luminosity in high-mass sources compared with only ~10 % for low-mass YSOs. The highest-J lines originate most likely from shocks, based on the strong correlation of CO and H$_2$O with physical parameters of the sources from low- to high-masses. Excitation of warm CO is very similar for all mass regimes, whereas H$_2$O temperatures are ~100 K higher for high-mass sources than the low-mass YSOs. Molecular cooling is ~4 times more important than cooling by [OI]. The total far-IR line luminosity is about 10$^{-3}$ and 10$^{-5}$ times lower than the dust luminosity for the low- and high-mass YSOs.
    Astronomy and Astrophysics 11/2013; 562. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, compare their HDO abundance distribution with other star-forming regions and constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component as well as a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11} respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10} respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.
    Astronomy and Astrophysics 10/2013; 560. · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [Context] Two competing models describe the formation of massive stars in objects like the Orion Trapezium. In the turbulent core accretion model, the resulting stellar masses are directly related to the mass distribution of the cloud condensations. In the competitive accretion model, the gravitational potential of the protocluster captures gas from the surrounding cloud for which the individual cluster members compete. [Aims] With high resolution submillimeter observations of the structure, kinematics, and chemistry of the proto-Trapezium cluster W3 IRS5, we aim to determine which mode of star formation dominates. [Methods] We present 354 GHz Submillimeter Array observations at resolutions of 1"-3" (1800-5400 AU) of W3 IRS5. ...... [Results] The observations show five emission peaks (SMM1-5). SMM1 and SMM2 contain massive embedded stars (~20 Msun); SMM3-5 are starless or contain low-mass stars (<8 Msun). The inferred densities are high, >= 10^7 cm^-3, but the core masses are small, 0.2-0.6 Msun. The detected molecular emission reveals four different chemical zones. ...... [Conclusions] The proto-Trapezium cluster W3 IRS5 is an ideal test case to discriminate between models of massive star formation. Either the massive stars accrete locally from their local cores; in this case the small core masses imply that W3 IRS5 is at the very end stages (1000 yr) of infall and accretion, or the stars are accreting from the global collapse of a massive, cluster forming core. We find that the observed masses, densities and line widths observed toward W3 IRS 5 and the surrounding cluster forming core are consistent with the competitive accretion of gas at rates of Macc~10^-4 Msun yr^-1 by the massive young forming stars. ......
    Astronomy and Astrophysics 08/2013; 558. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL2591 using space-based far-infrared observations of linear rotor molecules. Rotational spectral line signatures of CO, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30m spectra, cover transitions with E(up)/k between 5 and ~300 K (750K for 12C16O, using selected frequency settings up to 1850 GHz). The resolved spectral line profiles are used to separate and study various kinematic components. The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level, qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as E(up)/k increases from <50 to 700K. We constrain the following: n(H2)~10^5-10^6 cm^-3 and T~60-200K for the outflow gas; T=9-17K and N(H2)~3x10^21 cm^-2 for a known foreground absorption cloud; N(H2)<10^19 cm^-2 for a second foreground component. Our spherical envelope radiative transfer model systematically underproduces observed line emission at E(up)/k > 150 K for all species. This indicates that warm gas should be added to the model and that the model's geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (<10 km/s) outflow component consists of recently swept-up gas.
    03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context; Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate- or high-mass star-forming regions. As part of the "Water In Star-forming regions with Herschel" (WISH) key program, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10^5 L_sol. Aims; We analyse the CO line emission towards a large sample of protostars in terms of both line intensities and profiles. Methods; Herschel-HIFI spectra of the 12CO 10-9, 13CO 10-9 and C18O 5-4, 9-8 and 10-9 lines are analysed for a sample of 51 YSOs. In addition, JCMT spectra of 12CO 3-2 and C18O 3-2 extend this analysis to cooler gas components. Results; All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs. This relation can be extended to larger (extragalactic) scales. The majority of the detected 12CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the C18O spectra are mainly fitted with a single Gaussian. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad 12CO 3-2 and 10-9 velocity components correlate with those of the narrow C18O 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range.
    Astronomy and Astrophysics 01/2013; 553(125). · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel/HIFI observations of 30 transitions of water isotopologues toward the high-mass star forming region NGC 6334 I. The line profiles of H_2^{16}O, H_2^{17}O, H_2^{18}O, and HDO show a complex pattern of emission and absorption components associated with the embedded hot cores, a lower-density envelope, two outflow components, and several foreground clouds, some associated with the NGC 6334 complex, others seen in projection against the strong continuum background of the source. Our analysis reveals an H2O ortho/para ratio of 3 +/- 0.5 in the foreground clouds, as well as the outflow. The water abundance varies from ~10^{-8} in the foreground clouds and the outer envelope to ~10^{-6} in the hot core. The hot core abundance is two orders of magnitude below the chemical model predictions for dense, warm gas, but within the range of values found in other Herschel/HIFI studies of hot cores and hot corinos. This may be related to the relatively low gas and dust temperature (~100 K), or time dependent effects, resulting in a significant fraction of water molecules still locked up in dust grain mantles. The HDO/H_2O ratio in NGC 6334 I, ~2 10^{-4}, is also relatively low, but within the range found in other high-mass star forming regions.
    The Astrophysical Journal 12/2012; 765(1). · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The abundances of interstellar CH+ and SH+ are not well understood as their most likely formation channels are highly endothermic. Using data from Herschel, we study the formation of CH+ and SH+ in a typical high UV-illumination photon-dominated region (PDR), the Orion Bar. Herschel/HIFI provides velocity-resolved data of CH+ 1-0 and 2-1 and three hyperfine transitions of SH+. Herschel/PACS provides information on the excitation and spatial distribution of CH+ (up to J=6-5). The widths of the CH+ 2-1 and 1-0 transitions are of ~5 km/s, significantly broader than the typical width of dense gas tracers in the Orion Bar (2-3 km/s) and are comparable to the width of tracers of the interclump medium such as C+ and HF. The detected SH+ transitions are narrower compared to CH+ and have line widths of 3 km/s, indicating that SH+ emission mainly originates in denser condensations. Non-LTE radiative transfer models show that electron collisions affect the excitation of CH+ and SH+, and that reactive collisions need to be taken into account to calculate the excitation of CH+. Comparison to PDR models shows that CH+ and SH+ are tracers of the warm surface region (AV<1.5) of the PDR with temperatures between 500-1000 K. We have also detected the 5-4 transition of CF+ (FWHM=1.9 km/s) with an intensity that is consistent with previous observations of lower-J CF+ transitions toward the Orion Bar. A comparison to PDR models indicate that the internal vibrational energy of H2 can explain the formation of CH+ for typical physical conditions in the Orion Bar near the ionization front. H2 vibrational excitation is the most likely explanation of SH+ formation as well. The abundance ratios of CH+ and SH+ trace the destruction paths of these ions, and through that, indirectly, the ratios of H, H2 and electron abundances as a function of depth into the cloud.
    Astronomy and Astrophysics 12/2012; 550(96). · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we introduced detailed isotopic chemistry into the KOSMA-tau model for photon-dominated regions (PDRs) to give theoretical predictions for the abundance of the carbon isotopologues as a function of PDR parameters. Combined with radiative transfer computations for specific geometries, we estimated the possible intensity ratio of the [CII]/[13CII] lines. Here, we compare these predictions with new observations. We performed Herschel/HIFI observations of the [CII] 158micron line in a number of PDRs. In all sources we observed at least two hyperfine components of the [13CII] transition allowing to determine the [CII]/[13CII] intensity ratio, after some revision of the intrinsic hyperfine ratios. Comparing the intensity ratios with the results from the updated KOSMA-tau model, we identify cases dominated by chemical fractionation and cases dominated by the optical depth of the main isotopic line. An observable enhancement of the [CII]/[13CII] intensity ratio due to chemical fractionation depends mostly on geometry and velocity structure, and less on the gas density and radiation field. In our observations the [CII]/[13CII] ratio for the integrated line intensity was always dominated by the optical depth of the main isotopic line. However, an enhanced intensity ratio is found for particular velocity components in a few sources: the red-shifted material in the ultracompact HII region Mon R2, the wings of the turbulent profile in the Orion Bar, and possibly a blue wing in NGC7023. The mapping of the [13CII] lines in the Orion Bar allows to derive a C+ column density map confirming the temperature stratification of the C+ layer, in agreement with the chemical stratification of the Bar. The C+ column densities for all sources show that at the position of the [CII] peak emission, a dominant fraction of the gas-phase carbon is in the form of C+.
    11/2012;
  • Source
    K. -S. Wang, F. F. S. van der Tak, M. R. Hogerheijde
    [Show abstract] [Hide abstract]
    ABSTRACT: [Context] Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. [Aims] This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. [Methods] We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20000 Lsun) high-mass (10-16 Msun) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. [Results] At ~0.5" (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~ 800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H218O from the warm mid-layer, and SO2 from the upper disk. [Conclusions] We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion [...]
    Astronomy and Astrophysics 04/2012; 543. · 4.48 Impact Factor
  • Source
    Z. Nagy, F. F. S. van der Tak, G. A. Fuller, M. Spaans, R. Plume
    [Show abstract] [Hide abstract]
    ABSTRACT: The star formation rates in starburst galaxies are orders of magnitude higher than in local star-forming regions, and the origin of this difference is not well understood. We use sub-mm spectral line maps to characterize the physical conditions of the molecular gas in the luminous Galactic star-forming region W49A and compare them with the conditions in starburst galaxies. We probe the temperature and density structure of W49A using H_2CO and HCN line ratios over a 2'x2' (6.6x6.6 pc) field with an angular resolution of 15" (~0.8 pc) provided by the JCMT Spectral Legacy Survey. We analyze the rotation diagrams of lines with multiple transitions with corrections for optical depth and beam dilution, and estimate excitation temperatures and column densities. Comparing the observed line intensity ratios with non-LTE radiative transfer models, our results reveal an extended region (about 1'x1', equivalent to ~3x3 pc at the distance of W49A) of warm (> 100 K) and dense (>10^5 cm^-3) molecular gas, with a mass of 2x10^4 - 2x10^5 M_Sun (by applying abundances derived for other regions of massive star-formation). These temperatures and densities in W49A are comparable to those found in clouds near the center of the Milky Way and in starburst galaxies. The highly excited gas is likely to be heated via shocks from the stellar winds of embedded, O-type stars or alternatively due to UV irradiation, or possibly a combination of these two processes. Cosmic rays, X-ray irradiation and gas-grain collisional heating are less likely to be the source of the heating in the case of W49A.
    Astronomy and Astrophysics 04/2012; · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O2, and water, H2O. Contrary to expectation, the space missions SWAS and Odin found only very small amounts of water vapour and essentially no O2 in the dense star-forming interstellar medium. Only toward rho Oph A did Odin detect a weak line of O2 at 119 GHz in a beam size of 10 arcmin. A larger telescope aperture such as that of the Herschel Space Observatory is required to resolve the O2 emission and to pinpoint its origin. We use the Heterodyne Instrument for the Far Infrared aboard Herschel to obtain high resolution O2 spectra toward selected positions in rho Oph A. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. The 487.2GHz line was clearly detected toward all three observed positions in rho Oph A. In addition, an oversampled map of the 773.8GHz transition revealed the detection of the line in only half of the observed area. Based on their ratios, the temperature of the O2 emitting gas appears to vary quite substantially, with warm gas (> 50 K) adjacent to a much colder region, where temperatures are below 30 K. The exploited models predict O2 column densities to be sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these model, the observationally determined O2 column densities seem not to depend strongly on the derived gas temperatures, but fall into the range N(O2) = (3 to >6)e15/cm^2. Beam averaged O2 abundances are about 5e-8 relative to H2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz of about 4 - 5 arcmin, encompassing the entire rho Oph A core.
    Astronomy and Astrophysics 02/2012; 541:73. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clumpy density structure of photon-dominated regions is well established, but the physical properties of the clumps and of the surrounding interclump medium are only approximately known. The aim of this paper is to constrain the physical and chemical conditions in the Orion Bar, a prototypical nearby photon-dominated region. We present observations of the HF J=1-0 line, which appears in emission toward the Orion Bar, and compare the brightness of the line to non-LTE radiative transfer calculations. The large width of the HF line suggests an origin of the emission in the interclump gas, but collisional excitation by H2 in the interclump gas underpredicts the observed line intensity by factors of 3-5. In contrast, an origin of the line in the dense clumps requires a density of ~10^9 cm^-3, 10-100 times higher than previous estimates, which is unlikely. However, electron impact excitation reproduces our observations for T = 100 K and n(e) = 10 cm^-3, as expected for the interclump gas. We conclude that HF emission is a signpost of molecular gas with a high electron density. Similar conditions may apply to active galactic nuclei where HF also appears in emission.
    Astronomy and Astrophysics 12/2011; · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OH is an important molecule in the H2O chemistry and the cooling budget of star-forming regions. The goal of the Herschel key program `Water in Star-forming regions with Herschel' (WISH) is to study H2O and related species during protostellar evolution. Our aim in this letter is to assess the origin of the OH emission from star-forming regions and constrain the properties of the emitting gas. High-resolution observations of the OH 2Pi1/2 J = 3/2-1/2 triplet at 1837.8 GHz (163.1 micron) towards the high-mass star-forming region W3 IRS 5 with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel reveal the first hyperfine velocity-resolved OH far-infrared spectrum of a star-forming region. The line profile of the OH emission shows two components: a narrow component (FWHM approx. 4-5 km/s) with partially resolved hyperfine structure resides on top of a broad (FWHM approx. 30 km/s) component. The narrow emission agrees well with results from radiative transfer calculations of a spherical envelope model for W3 IRS 5 with a constant OH abundance of approx. 8e-9. Comparison with H2O yields OH/H2O abundance ratios of around 1e-3 for T > 100 K and around unity for T < 100K, consistent with the current picture of the dense cloud chemistry with freeze-out and photodesorption. The broad component is attributed to outflow emission. An abundance ratio of OH/H2O > 0.028 in the outflow is derived from comparison with results of water line modeling. This ratio can be explained by a fast J-type shock or a slower UV-irradiated C-type shock.
    Astronomy and Astrophysics 05/2011; 531. · 4.48 Impact Factor

Publication Stats

696 Citations
101.32 Total Impact Points

Institutions

  • 2011–2014
    • University of Groningen
      Groningen, Groningen, Netherlands
  • 2008–2010
    • Netherlands Institute for Space Research, Utrecht
      Utrecht, Utrecht, Netherlands
    • University of Toledo
      Toledo, Ohio, United States
  • 2007
    • GGD Groningen
      Groningen, Groningen, Netherlands
  • 2002–2004
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany