L J Baker

Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States

Are you L J Baker?

Claim your profile

Publications (3)12.63 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. TPK has no sequence homologs in the PDB and functions by an unknown mechanism. The TPK structure has been determined as a significant step toward elucidating its catalytic action. The crystal structure of Saccharomyces cerevisiae TPK complexed with thiamin has been determined at 1.8 A resolution. TPK is a homodimer, and each subunit consists of two domains. One domain resembles a Rossman fold with four alpha helices on each side of a 6 strand parallel beta sheet. The other domain has one 4 strand and one 6 strand antiparallel beta sheet, which form a flattened sandwich structure containing a jelly-roll topology. The active site is located in a cleft at the dimer interface and is formed from residues from domains of both subunits. The TPK dimer contains two compound active sites at the subunit interface. The structure of TPK with one substrate bound identifies the location of the thiamin binding site and probable catalytic residues. The structure also suggests a likely binding site for ATP. These findings are further supported by TPK sequence homologies. Although possessing no significant sequence homology with other pyrophospokinases, thiamin pyrophosphokinase may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis.
    Structure 07/2001; 9(6):539-46. · 5.99 Impact Factor
  • D E Timm, J Liu, L J Baker, R A Harris
    [Show abstract] [Hide abstract]
    ABSTRACT: Thiamin pyrophosphate (TPP) is a coenzyme derived from vitamin B1 (thiamin). TPP synthesis in eukaryotes requires thiamin pyrophosphokinase (TPK), which catalyzes the transfer of a pyrophosphate group from ATP to thiamin. TPP is essential for central metabolic processes, including the formation of acetyl CoA from glucose and the Krebs cycle. Deficiencies in human thiamin metabolism result in beriberi and Wernicke encephalopathy. The crystal structure of mouse TPK was determined by multiwavelength anomalous diffraction at 2.4 A resolution, and the structure of TPK complexed with thiamin has been refined at 1.9 A resolution. The TPK polypeptide folds as an alpha/beta-domain and a beta-sandwich domain, which share a central ten-stranded mixed beta-sheet. TPK subunits associate as a dimer, and thiamin is bound in the dimer interface. Despite lacking apparent sequence homology with other proteins, the alpha/beta-domain resembles the Rossman fold and is similar to other kinase structures, including another pyrophosphokinase and a thiamin biosynthetic enzyme. Comparison of mouse and yeast TPK structures reveals differences that could be exploited in developing species-specific inhibitors of potential use as antimicrobial agents.
    Journal of Molecular Biology 07/2001; 310(1):195-204. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I beta-barrel.
    Protein Science 06/2001; 10(5):997-1004. · 2.74 Impact Factor

Publication Stats

89 Citations
12.63 Total Impact Points

Institutions

  • 2001
    • Indiana University-Purdue University Indianapolis
      • Department of Biochemistry and Molecular Biology
      Indianapolis, IN, United States