Kristina Kusche

Johannes Gutenberg-Universität Mainz, Mainz, Rhineland-Palatinate, Germany

Are you Kristina Kusche?

Claim your profile

Publications (8)33.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemocyanin is a copper-containing respiratory protein that is widespread within the arthropod phylum. Among the Crustacea, hemocyanins are apparently restricted to the Malacostraca. While well-studied in Decapoda, no hemocyanin sequence has been known from the 'lower' Malacostraca. The hemocyanin of the amphipod Gammarus roeseli is a hexamer that consists of at least five distinct subunits. The complete cDNA sequence of one subunit and a tentative partial sequence of another subunit have been determined. The complete G. roeseli hemocyanin subunit comprises 2,150 bp, which translates in a protein of 672 amino acids with a molecular mass of 76.3 kDa. Phylogenetic analyses show that, in contrast to previous assumptions, the amphipod hemocyanins do not belong to the alpha-type of crustacean hemocyanin subunits. Rather, amphipod hemocyanins split from the clade leading to alpha and gamma-subunits most likely at the time of separation of peracarid and eucarid Crustacea about 300 million years ago. Molecular clock analyses further suggest that the divergence of beta-type subunits and other crustacean hemocyanins occurred around 315 million years ago (MYA) in the malacostracan stemline, while alpha- and gamma-type subunits separated 258 MYA, and pseudohemocyanins and gamma-subunits 210 million years ago.
    Journal of Comparative Physiology B 09/2005; 175(6):445-52. · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemocyanins are large oligomeric copper-containing proteins that serve for the transport of oxygen in many arthropod species. While studied in detail in the Chelicerata and Crustacea, hemocyanins had long been considered unnecessary in the Myriapoda. Here we report the complete molecular structure of the hemocyanin from the common house centipede Scutigera coleoptrata (Myriapoda: Chilopoda), as deduced from 2D-gel electrophoresis, MALDI-TOF mass spectrometry, protein and cDNA sequencing, and homology modeling. This is the first myriapod hemocyanin to be fully sequenced, and allows the investigation of hemocyanin structure-function relationship and evolution. S. coleoptrata hemocyanin is a 6 x 6-mer composed of four distinct subunit types that occur in an approximate 2 : 2 : 1 : 1 ratio and are 49.5-55.5% identical. The cDNA of a fifth, highly diverged, putative hemocyanin was identified that is not included in the native 6 x 6-mer hemocyanin. Phylogenetic analyses show that myriapod hemocyanins are monophyletic, but at least three distinct subunit types evolved before the separation of the Chilopoda and Diplopoda more than 420 million years ago. In contrast to the situation in the Crustacea and Chelicerata, the substitution rates among the myriapod hemocyanin subunits are highly variable. Phylogenetic analyses do not support a common clade of Myriapoda and Hexapoda, whereas there is evidence in favor of monophyletic Mandibulata.
    European Journal of Biochemistry 08/2003; 270(13):2860-8. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hemocyanin of the European spiny lobster Palinurus elephas (synonym: Palinurus vulgaris) is a hexamer composed by four closely related but distinct subunits. We have obtained the full cDNA sequences of all four subunits, which cover 2275-2298 bp and encode for native polypeptides of 656 and 657 amino acids. The P. elephas hemocyanin subunits belong to the alpha-type of crustacean hemocyanins, whereas beta- and gamma-subunits are absent in this species. An unusual high ratio of non-synonymous versus synonymous nucleotide substitutions was observed, suggesting positive selection among subunits. Assuming a constant evolution rate, the P. elephas hemocyanin subunits emerged from a single hemocyanin gene around 25 million years ago. The alpha-type hemocyanins of P. elephas and the American spiny lobster Panulirus interruptus split around 100 million years ago. This is about five times older than the assumed divergence time of the species and suggests that the genera may have split with the formation of the Atlantic Ocean. The application of the Bayesian method for phylogenetic inference allows for the first time a solid reconstruction of the evolution of the decapod hemocyanins, showing that the beta-subunit types diverged first and that the crustacean pseudo-hemocyanins are associated with the gamma-type subunits.
    Journal of Comparative Physiology B 07/2003; 173(4):319-25. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinurus elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8A resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as alpha-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%) of the hemocyanin subunits from the European spiny lobster P.elephas and the American spiny lobster Panulirus interruptus. Comparison of the P.elephas hemocyanin electron microscopy (EM) density map with the known P.interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins. By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P.interruptus X-ray data.
    Journal of Molecular Biology 01/2003; 325(1):99-109. · 3.91 Impact Factor
  • Source
    Kristina Kusche, Hilke Ruhberg, Thorsten Burmester
    [Show abstract] [Hide abstract]
    ABSTRACT: The velvet worms (Onychophora) are considered living fossils and are closely related to the Euarthropoda. Onychophora possess a tracheal system for respiratory function, but oxygen-transport proteins have been considered unnecessary. Here, we show that the hemolymph of the Epiperipatus sp. (Onychophora: Peripatidae) contains an arthropod-type hemocyanin, demonstrating that such protein exists outside the Euarthropoda. Thus, the evolution of oxygen carriers preceded the divergence of the Onychophora and Euarthropoda and was most likely linked to the evolution of an efficient circulatory system in a low-oxygen environment. The cDNA of the Epiperipatus hemocyanin subunit comprises 2,287 bp and encodes for a protein of 641 aa (73.6 kDa). Phylogenetic analyses of the arthropod hemocyanin sequences show that the Onychophora form a robust sister-group of the Euarthropoda, whereas the monophyly of the Tracheata is not supported.
    Proceedings of the National Academy of Sciences 09/2002; 99(16):10545-8. · 9.81 Impact Factor
  • Source
    K Kusche, T Burmester
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemocyanins are copper-containing respiratory proteins of the Arthropoda that have so far been thoroughly investigated only in the Chelicerata and the Crustacea but have remained unstudied until now in the Myriapoda. Here we report the first sequence of a myriapod hemocyanin. The hemocyanin of Spirostreptus sp. (Diplopoda: Spirostreptidae) is composed of two distinct subunits that are arranged in a 6 x 6 native molecule. The cloned hemocyanin subunit cDNA codes of for a polypeptide of 653 amino acids (75.5 kDa) that includes a signal peptide of 18 amino acids. The sequence closely resembles that of the chelicerate hemocyanins. Molecular phylogenetic analyses reject with high statistical confidence the integrity of the Tracheata (i.e., Myriapoda + Insecta) but give conflicting results on the position of the myriapod hemocyanin. While distance matrix and maximum-likelihood methods support a basal position of the Spirostreptus hemocyanin with respect to the other hemocyanins, parsimony analysis suggests a sister group relationship with the chelicerate hemocyanins. The latter topology is also supported by a unique shared deletion of an alpha-helix. A common ancestry of Myriapoda and Chelicerata should be seriously considered.
    Molecular Biology and Evolution 09/2001; 18(8):1566-73. · 10.35 Impact Factor
  • K Kusche, T Burmester
    [Show abstract] [Hide abstract]
    ABSTRACT: In the American lobster, Homarus americanus, oxygen is transported by a hemocyanin that is composed 2 x 6 subunits. N-terminal sequencing show the presence of three distinct subunit types (alpha, beta and gamma). We cloned the cDNA of one of these subunits that belong to the alpha-type. It encodes a hemocyanin subunit of 654 amino acids with a molecular mass of 84.8 kDa, which is synthesized in the hepatopancreas. Phylogenetic analyses of the crustacean hemocyanin sequences show two well-separated clades, which correspond to the alpha and gamma-type subunits. Sequences of beta-type subunits are still unknown. The gamma-sequences have evolved about 15% faster than the alpha-subunits, consistent with the proposed conservative function of the latter. Under the assumption of a molecular clock we calculated that alpha- and gamma-subunits split about 214 +/- 14 million years ago, suggesting their divergence only in the decapod Crustacea.
    Biochemical and Biophysical Research Communications 05/2001; 282(4):887-92. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75 kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinuris elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8 Angstrom resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as a-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%.) of the hemocyanin subunits from the European spiny lobster P. elephas and the American spiny lobster Panulirus interruptus. Comparison of the P. elephas hemocyanin electron microscopy (EM) density map with the known P. interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins, By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P. interruptus X-ray data. (C) 2002 Elsevier Science Ltd. All rights reserved
    Journal of Molecular Biology, v.325, 99-109 (2003).