Jean-Charles Cuillandre

University of California, Irvine, Irvine, California, United States

Are you Jean-Charles Cuillandre?

Claim your profile

Publications (58)122.96 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galactic archeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data-reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the Atlas3D project, we have obtained with the MegaCam camera at the Canada-France Hawaii Telescope extremely deep, multi--band, images of nearby early-type galaxies. We present here a catalog of 92 galaxies from the Atlas3D sample, that are located in low to medium density environments. The observing strategy and data reduction pipeline, that achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey is compared to other recent deep imaging projects. The paper highlights the capability of LSB--optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar halos of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs is one of the prime goals of the project. We provide specific examples of each type of observed structures -- tidal tails, stellar streams and shells --, and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in $ugriJK_s$ bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's $i$-band mass-to-light ratio ($M/L_i^*$) decreases from 0.5 dex in the bulge to $\sim 0.2$ dex at 40 kpc. The best-constrained stellar population models use the full $ugriJK_s$ SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the $gi$-SED alone yield $M/L_i^*$ that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for $M/L_i$ via $g-i$ colour found in the literature. We advocate a stellar mass of $M_*(30\mathrm{kpc})=10.3^{+2.3}_{-1.7}\times 10^{10}\mathrm{M}_\odot$ for the M31 bulge and disk.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey, a large imaging survey covering Virgo's primary subclusters to their virial radii. Using the g', (g'-i') color-magnitude diagram of unresolved and marginally-resolved sources, we constructed 2-D maps of the GC distribution. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the extent of the cluster, where the red (metal-rich) GCs are largely located around the massive early-type galaxies, whilst the blue (metal-poor) GCs have a more extended spatial distribution, with significant populations present beyond 83' (215 kpc) along the major axes of M49 and M87. The GC distribution around M87 and M49 shows remarkable agreement with the shape, ellipticity and boxiness of the diffuse light surrounding both galaxies. We find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to the locations of Virgo galaxies and the intracluster X-ray gas, and find good agreement between these baryonic structures. The Virgo cluster contains a total population of 67300$\pm$14400 GCs, of which 35% are located in M87 and M49 alone. We compute a cluster-wide specific frequency S_N,CL=$2.8\pm0.7$, including Virgo's diffuse light. The GC-to-baryonic mass fraction is e_b=$5.7\pm1.1\times10^{-4} $and the GC-to-total cluster mass formation efficiency is e_t=$2.9\pm0.5\times10^{-5}$, values slightly lower than, but consistent with, those derived for individual galactic halos. Our results show that the production of the complex structures in the unrelaxed Virgo cluster core (including the diffuse intracluster light) is an ongoing process.(abridged)
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalogue of 922 globular cluster line-of- sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. 263 globular clusters, mainly located beyond 40 kpc, are newly observed by the Next Generation Virgo Survey (NGVS). For the M2M modelling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modelled as a logarithmic potential. Our best dynamical model returns a stellar mass-to-light ratio in the I band of M/LI = 6.0(+ -0.3) M_sun/L_sun with a dark matter potential scale velocity of 591(+ -50) km/s and scale radius of 42(+ -10) kpc. We determine the total mass of M87 within 180 kpc to be (1.5 + - 0.2) 10^13 M_sun. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond 45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derived is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy beta parameter for the globular clusters in M87 is small, varying from -0.2 at the centre to 0.2 at 40 kpc, and gradually decreasing to zero at 120 kpc.
    The Astrophysical Journal 07/2014; 792(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group disks of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and HI surveys with the CFHT MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring deep spectroscopic observations. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.
    03/2014; 440(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NGVS-IR project (Next Generation Virgo Survey - Infrared) is a contiguous near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). The current state of NGVS-IR consists of Ks-band imaging of 4 deg^2 centered on M87, and J and Ks-band imaging of 16 deg^2 covering the region between M49 and M87. In this paper, we present the observations of the central 4 deg^2 centered on Virgo's core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope and the total integration time was 41 hours distributed in 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5\sigma limiting magnitude is Ks=24.4 AB mag and the 50% completeness limit is Ks=23.75 AB mag for point source detections, when using only images with better than 0.7" seeing (median seeing 0.54"). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with \mu_Ks=24.4 AB mag arcsec^-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiK color-color diagram which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns needed to continue the exploration of Virgo's photometric and kinematic sub-structures, and will help the design of future searches for globular clusters in extragalactic systems. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiK diagram will address the mapping and analysis of extended structures and compact stellar systems in and around Virgo galaxies.
    The Astrophysical Journal Supplement Series 01/2014; 210:4. · 16.24 Impact Factor
  • Source
    Jonathan Sick, Stéphane Courteau, Jean-Charles Cuillandre
    [Show abstract] [Hide abstract]
    ABSTRACT: The Andromeda Optical and Infrared Disk Survey has mapped M31 in $u^* g^\prime r^\prime i^\prime J K_s$ wavelengths out to R=40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical $u^* g^\prime r^\prime i^\prime$ images by building real-time maps of the sky background with sky-target nodding. These maps are stable to $\mu_g \lesssim 28.5$ mag arcsec$^{-2}$ and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.
    10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of 2010 GB$_{174}$, a likely new member of the Inner Oort Cloud (IOC). 2010 GB$_{174}$ is one of 91 Trans Neptunian Objects (TNOs) and Centaurs discovered in a 76 deg$^2$ contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS) --- a moderate ecliptic latitude survey reaching a mean limiting magnitude of $g^\prime \simeq 25.5$ --- using MegaPrime on the 3.6m Canada France Hawaii Telescope. 2010 GB$_{174}$ is found to have an orbit with semi-major axis $a\simeq350.8$ AU, inclination $i \simeq 21.6^\circ$ and pericentre $q\sim48.5$ AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km ($H_V \le 6.2$ mag) to be $\simeq 11\,000$. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that `re-discovered' the IOC object Sedna) gives, for an assumed a power-law LF for IOC objects, a slope of $\alpha \simeq 0.7 \pm 0.2$, with only two detections in this region this slope estimate is highly uncertain.
    The Astrophysical Journal Letters 08/2013; 775(1). · 6.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present wide-field near-infrared J and Ks images of the Andromeda Galaxy taken with WIRCam on the Canada-France-Hawaii Telescope (CFHT) as part of the Andromeda Optical and Infrared Disk Survey (ANDROIDS). This data set allows simultaneous observations of resolved stars and NIR surface brightness across M31's entire bulge and disk (within R=22 kpc). The primary concern of this work is the development of NIR observation and reduction methods to recover a uniform surface brightness map across the 3x1 degree disk of M31. This necessitates sky-target nodding across 27 WIRCam fields. Two sky-target nodding strategies were tested, and we find that strictly minimizing sky sampling latency does not maximize sky subtraction accuracy, which is at best 2% of the sky level. The mean surface brightness difference between blocks in our mosaic can be reduced from 1% to 0.1% of the sky brightness by introducing scalar sky offsets to each image. The true surface brightness of M31 can be known to within a statistical zeropoint of 0.15% of the sky level (0.2 mag arcsec sq. uncertainty at R=15 kpc). Surface brightness stability across individual WIRCam frames is limited by both WIRCam flat field evolution and residual sky background shapes. To overcome flat field variability of order 1% over 30 minutes, we find that WIRCam data should be calibrated with real-time sky flats. Due either to atmospheric or instrumental variations, the individual WIRCam frames have typical residual shapes with amplitudes of 0.2% of the sky after real-time flat fielding and median sky subtraction. We present our WIRCam reduction pipeline and performance analysis here as a template for future near-infrared observers needing wide-area surface brightness maps with sky-target nodding, and give specific recommendations for improving photometry of all CFHT/WIRCam programs. (Abridged)
    The Astronomical Journal 03/2013; 147(5). · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird Telescope. Using the deeper, higher-resolution and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low-surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already catalogued VCC dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g-i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of so-called "pre-processing" before it gets affected by the cluster environment, or in a group which already ventured towards the central regions of Virgo Cluster.
    The Astrophysical Journal 02/2013; 767(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a giant HI tail in the intra-group medium of HCG 44 as part of the Atlas3D survey. The tail is ~300 kpc long in projection and contains ~5x10^8 M_sun of HI. We detect no diffuse stellar light at the location of the tail down to ~28.5 mag/arcsec^2 in g band. We speculate that the tail might have formed as gas was stripped from the outer regions of NGC 3187 (a member of HCG 44) by the group tidal field. In this case, a simple model indicates that about 1/3 of the galaxy's HI was stripped during a time interval of <1 Gyr. Alternatively, the tail may be the remnant of an interaction between HCG 44 and NGC 3162, a spiral galaxy now ~650 kpc away from the group. Regardless of the precise formation mechanism, the detected HI tail shows for the first time direct evidence of gas stripping in HCG 44. It also highlights that deep HI observations over a large field are needed to gather a complete census of this kind of events in the local Universe.
    Monthly Notices of the Royal Astronomical Society 09/2012; 428(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) is a high impact scientific program which will see its final official release open to the world in 2012. That release will seal the legacy aspect of the survey which has already produced a large collection of scientific articles with topics ranging from cosmology to the Solar system. The survey core science was focused on dark energy and dark matter: the full realization of the scientific potential of the data set gathered between 2003 and 2009 with the MegaCam wide-field imager mounted at the CFHT prime focus is almost complete with the Supernovae Legacy Survey (SNLS) team preparing its third and last release (SNLS5), and the CFHTLenS team planning the release based around the cosmic shear survey later this year. While the data processing center TERAPIX offered to the CFHTLS scientific community regular releases over the course of the survey in its data acquisition phase (T0001-T0006), the final release took three years to refine in order to produce a pristine data collection photometrically calibrated at better than the percent both internally and externally over the total survey surface of 155 square degrees in all five photometric bands (u*, g’, r’, i’, z’). This final release, called T0007, benefits from the various advances in photometric calibration MegaCam has benefited through the joint effort between SNLS and CFHT to calibrate MegaCam at levels unexplored for an optical wide-field imager. T0007 stacks and catalogs produced by TERAPIX will be made available to the world at CADC while the CDS will offer a full integration of the release in its VO tools from VizieR to Aladin. The photometric redshifts have been produced to be released in phase with the survey. This proceeding is a general introduction to the survey and aims at presenting its final release in broad terms.
    Proc SPIE 09/2012;
  • Gregory A. Barrick, Jeffrey Ward, Jean-Charles Cuillandre
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESPaDOnS spectrograph at the Canada-France-Hawaii Telescope was recently upgraded to use an E2V CCD42-90 deep-depletion CCD. While changing to this device from a standard silicon CCD42-90 had many benefits such as much higher red QE and much lower fringing, it was also found that the new device exhibited persistence. After talking with E2V, a solution to the persistence was found, but this resulted in reduced resolution on the spectrograph from charge diffusion. This paper will describe the solution found to allow the detector to run with no persistence and with limited charge diffusion.
    Proc SPIE 07/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg2 MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius—covering a total area of 104 deg2—in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g 25.9 mag (10σ) and a surface brightness limit of μg ~ 29 mag arcsec–2 (2σ above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with "foreground" and "background" science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events.
    The Astrophysical Journal Supplement Series 05/2012; 200(1):4. · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R_proj ~ 20 kpc suggest that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this "inner spheroid." We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocity and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v_rot ~ 50 km/s) beyond R_proj ~ 5 kpc. The velocity dispersion decreases from about 140 km/s at R_proj = 7 kpc to 120 km/s at R_proj = 14 kpc, consistent to 2 sigma with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2 - 14 r_eff) than for the comparison samples.
    The Astrophysical Journal 04/2012; 752(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the SPLASH survey of the Andromeda galaxy (M31) and its neighbors, we have obtained Keck/DEIMOS spectra of the compact elliptical (cE) satellite M32. This is the first resolved-star kinematical study of any cE galaxy. In contrast to previous studies that extended out to r<30"~1Re~100pc, we measure the rotation curve and velocity dispersion profile out to r~250" and higher order Gauss-Hermite moments out to r~70". We achieve this by combining integrated-light spectroscopy at small radii (where crowding/blending are severe) with resolved stellar spectroscopy at larger radii, using spatial and kinematical information to statistically account for M31 contamination. The rotation curve and velocity dispersion profile extend well beyond the radius (r~150") where the isophotes are distorted. Unlike NGC 205, another close dwarf companion of M31, M32's kinematic are regular and symmetric and do not show obvious sharp gradients across the region of isophotal elongation and twists. We interpret M32's kinematics using three-integral axisymmetric dynamical equilibrium models constructed using Schwarzschild's orbit superposition technique. Models with a constant M/L can fit the data remarkably well. However, since such a model requires an increasing tangential anisotropy with radius, invoking the presence of an extended dark halo may be more plausible. Such an extended dark halo is definitely required to bind a half-dozen fast-moving stars observed at the largest radii, but these stars may not be an equilibrium component of M32. The observed regularity of the stellar kinematics, as well as the possible detection of an extended dark halo, are unexpected if M31 tides are significant at large radii. While these findings by themselves do not rule out tidal models for cE formation, they suggest that tidal stripping may not be as significant for shaping cE galaxies as has often been argued.
    02/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the Atlas-3D sample, NGC 680 and NGC 5557. Our ultra deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag/arcsec^2 in the g-band. They reveal very low-surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long tail East of NGC 5557 hosts gas-rich star-forming objects. NGC 680 exhibits two major diffuse plumes apparently connected to extended HI tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris, the star-forming objects near NGC 5557, long lived Tidal Dwarf Galaxies and that each of the two ETGs was assembled during a relatively recent, major wet merger, which likely occurred at a redshift below z = 0.5. The inner kinematics of NGC 680 is typical for fast rotators which make the bulk of nearby ETGs in the Atlas-3D sample. NGC 5557 belongs to the poorly populated class of massive, round, slow rotators that are predicted by semi-analytic models and cosmological simulations to be the end-product of a complex mass accretion history, involving ancient major mergers and more recent minor mergers. Our observations suggest that under specific circumstances a single binary merger may dominate the formation history of such objects and thus that at least some massive ETGs may form at relatively low redshift (abridged).
    Monthly Notices of the Royal Astronomical Society 05/2011; 417(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the coordinates of 67 55' x 55' patches of sky which have the rare combination of both high stellar surface density (>0.5 arcmin^{-2} with 13<R<16.5 mag) and low extinction (E(B-V)<0.1). These fields are ideal for adaptive-optics based follow-up of extragalactic targets. One region of sky, situated near Baade's Window, contains most of the patches we have identified. Our optimal field, centered at RA: 7h24m3s, Dec: -1deg27'15", has an additional advantage of being accessible from both hemispheres. We propose a figure of merit for quantifying real-world adaptive optics performance, and use this to analyze the performance of multi-conjugate adaptive optics in these fields. We also compare our results to those that would be obtained in existing deep fields. In some cases adaptive optics observations undertaken in the fields given in this paper would be orders of magnitude more efficient than equivalent observations undertaken in existing deep fields.
    Publications of the Astronomical Society of the Pacific 01/2011; 123. · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive optics wavefront sensing imposes stringent requirements on detectors, due to the simultaneous need for extremely low read noise and high frame rates. Curvature wavefront sensing measurements are based on the normalized intensity of the signal in a given subaperture, and avalance photodiodes (APDs) have traditionally been used as detectors in curvature systems such as the Canada-France-Hawaii Telescope (CFHT) adaptive optics (AO) bonnette, called PUEO after the endemic Hawaiian owl. Passively quenched APDs are robust but have low QE ( ˜ 40 % ), while actively quenched APDs can have much higher QE, but have been known to fail. Furthermore, curvature systems with large numbers of subapertures are now in operation, and the cost of individual APDs may become prohibitive for such systems. Thus, a CCD-based alternative appears very attractive, and development of a specific chip was initiated at ESO 10 years ago. In this article, we report on the performance of the FlyEyes camera, a project that was conceived to compare the performance of the backside-illuminated custom-designed CCD detector with an array of APDs, used in an operational and well-characterized curvature wavefront AO system. The on-sky performance is demonstrated to be unaffected on bright guide stars (i.e., negligible latency), and although the faint end suffers from the 2.5 e- read noise, the performance can be regained by lowering the frame rate on the wavefront sensor. In this article, we report on results that show that the CCD can be used to replace an array of expensive APDs. This would enable a cost-effective upgrade of PUEO to a higher-order system, as has been proposed at various occasions.
    Publications of the Astronomical Society of the Pacific 01/2011; 123:448-460. · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 'Imaka project is a high-resolution wide-field imager proposed for the Canada-France-Hawaii telescope (CFHT) on Mauna Kea. 'Imaka takes advantage of two features of the optical turbulence above Mauna Kea: weak optical turbulence in the free-atmosphere and boundary layer turbulence which is highly confined within a surface layer tens of meters thick and or the telescope enclosures. The combination of the two allows a ground-layer adaptive optics system (GLAO) to routinely deliver an extremely-wide corrected field of view of one-degree at an excellent free-atmosphere seeing limit at visible wavelengths. In addition, populating the focal-plane with orthogonal-transfer CCDs provides a second level of image improvement on the free-atmosphere seeing and the residual GLAO correction. The impact of such an instrument covers a broad range of science and is a natural progression of CFHT's wide-field expertise.
    Proc SPIE 07/2010;