S. Lucatello

The Astronomical Observatory of Brera, Merate, Lombardy, Italy

Are you S. Lucatello?

Claim your profile

Publications (190)599.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information on globular clusters (GC) formation mechanisms can be gathered by studying the chemical signature of the multiple populations that compose these stellar systems. In particular, we are investigating the anticorrelations among O, Na, Al, and Mg to explore the influence of cluster mass and environment on GCs in the Milky Way and in extragalactic systems. We present here the results obtained on NGC 6139 which, on the basis of its horizontal branch morphology, had been proposed to be dominated by first-generation stars. In our extensive study based on high resolution spectroscopy, the first for this cluster, we found a metallicity of [Fe/H]= -1.579 +/- 0.015 +/- 0.058 (rms=0.040 dex, 45 bona fide member stars) on the UVES scale defined by our group. The stars in NGC 6139 show a chemical pattern normal for GCs, with a rather extended Na-O (and Mg-Al) anticorrelation. NGC 6139 behaves like expected from its mass and contains a large fraction (about two thirds) of second-generation stars.
    Astronomy and Astrophysics 07/2015; DOI:10.1051/0004-6361/201526592 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature $T_{\rm C}=40-1741$ K, achieving typical precisions of $\sim 0.07$ dex. The North component shows abundances in all elements higher by $+0.067 \pm 0.032$ dex on average, with a mean difference of +0.078 dex for elements with $T_{\rm C} > 800$ K. The significance of the XO-2N abundance difference relative to XO-2S is at the $2\sigma$ level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of $M_{\oplus}$ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of $(4.7 \pm 0.9) \times 10^{-5}$ dex K$^{-1}$, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many astronomers now participate in large international collaborations, and it is important to examine whether these structures foster a scientific climate that is inclusive and diverse. The Committee on the Participation of Women in the Sloan Digital Sky Survey (CPWS) was formed to evaluate the demographics and gender climate within SDSS-IV, one of the largest and most geographically distributed astronomical collaborations. In April 2014, the CPWS administered a demographic survey to establish a baseline for the incipient SDSS-IV. We received responses from 250 participants (46% of the active membership). Half of the survey respondents were located in the US or Canada and 30% were based in Europe. Eleven percent of survey respondents considered themselves to be an ethnic minority at their current institution. Twenty-five percent of the SDSS-IV collaboration members are women, a fraction that is consistent with the US astronomical community, but substantially higher than the fraction of women in the IAU (16%). Approximately equal fractions of men and women report holding positions of leadership. When binned by academic age and career level, men and women also assume leadership roles at approximately equal rates, in a way that increases steadily for both genders with increasing seniority. In this sense, SDSS-IV has been successful in recruiting leaders that are representative of the collaboration. Yet, more progress needs to be made towards achieving gender balance and increasing diversity in the field of astronomy, and there is still room for improvement in the membership and leadership of SDSS-IV. For example, at the highest level of SDSS-IV leadership, women disproportionately assume roles related to education and public outreach. The CPWS plans to use these initial data to establish a baseline for tracking demographics over time as we work to assess and improve the climate of SDSS-IV.
    Publications of the Astronomical Society of the Pacific 05/2015; DOI:10.1086/682387 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of multiple populations in globular clusters has been well established thanks to high-resolution spectroscopy. It is widely accepted that distinct populations are a consequence of different stellar generations: intra-cluster pollution episodes are required to produce the peculiar chemistry observed in almost all clusters. Unfortunately, the progenitors responsible have left an ambiguous signature and their nature remains unresolved. To constrain the candidate polluters, we have measured lithium and aluminium abundances in more than 180 giants across three systems: NGC~1904, NGC~2808, and NGC~362. The present investigation along with our previous analysis of M12 and M5 affords us the largest database of simultaneous determinations of Li and Al abundances. Our results indicate that Li production has occurred in each of the three clusters. In NGC~362 we detected an M12-like behaviour, with first and second-generation stars sharing very similar Li abundances favouring a progenitor that is able to produce Li, such as AGB stars. Multiple progenitor types are possible in NGC~1904 and NGC~2808, as they possess both an intermediate population comparable in lithium to the first generation stars and also an extreme population, that is enriched in Al but depleted in Li. A simple dilution model fails in reproducing this complex pattern. Finally, the internal Li variation seems to suggest that the production efficiency of this element is a function of the cluster's mass and metallicity - low-mass or relatively metal-rich clusters are more adept at producing Li.
    Monthly Notices of the Royal Astronomical Society 03/2015; 449(4). DOI:10.1093/mnras/stv612 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the abundance analysis of 82 red giant branch stars in the dense, metal-poor globular cluster NGC 6093 (M 80), the largest sample of stars analyzed in this way for this cluster. From high resolution UVES spectra of 14 stars and intermediate resolution GIRAFFE spectra for the other stars we derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu. On our UVES metallicity scale the mean metal abundance of M 80 is [Fe/H]=-1.791+/-0.006+/-0.076 (+/-statistical +/-systematic error) with rms=0.023 (14 stars). M 80 shows star to star variations in proton-capture elements, and the extension of the Na-O anticorrelation perfectly fit the relations with (i) total cluster mass, (ii) horizontal branch morphology, and (iii) cluster concentration previously found by our group. The chemistry of multiple stellar populations in M 80 does not look extreme. The cluster is also a typical representative of halo globular clusters for what concerns the pattern of alpha-capture and Fe-group elements. However we found that a significant contribution from the s-process is required to account for the distribution of neutron-capture elements. A minority of stars in M 80 seem to exhibit slightly enhanced abundances of s-process species, compatible with those observed in M 22 and NGC 1851, although further confirmation from larger samples is required.
    Astronomy and Astrophysics 03/2015; DOI:10.1051/0004-6361/201525951 · 4.48 Impact Factor
  • R. Gratton · S. Lucatello · E. Carretta · A. Bragaglia
    [Show abstract] [Hide abstract]
    ABSTRACT: We review spectroscopic evidence of multiple stellar populations in globular clusters. First, we lay down the basic data: the C-N, Na-O, Mg-Al anti-correlations among red giants and main sequence stars, and discuss how they appear to be general properties of globular clusters, in spite of cluster-to-cluster differences. We will then describe what is currently known about He from spectroscopy. We will then present the implications and current observations for the interpretation of the horizontal branches, showing that the multiple population phenomenon is strongly related to the distribution of stars along them. We will briefly mention the spectroscopic evidence related to some less understood cases, like the clusters with multiple subgiant branches. Finally, we summarize the relation between multiple populations and general properties for globular clusters, and their implications for the formation scenario.
    Proceedings of the International Astronomical Union 02/2015; 10(H16). DOI:10.1017/S1743921314005547
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li)=2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star's evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster but the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. Whilst the star sits just above the cluster bump luminosity, its temperature places it towards the blue side of the giant branch in the colour-magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesised Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.
    02/2015; 801(2). DOI:10.1088/2041-8205/801/2/L32
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the light-element behavior of red giant stars in Northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE). We derive abundances of nine elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 globular clusters. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that $^{28}$Si leakage has occurred in this cluster. We also present C, N and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent on stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of $\alpha-$elements (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.
    The Astronomical Journal 01/2015; 149(5). DOI:10.1088/0004-6256/149/5/153 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 the Celestial sphere in five bands and obtained over five million astronomical spectra.
    The Astrophysical Journal Supplement Series 01/2015; 219(1). DOI:10.1088/0067-0049/219/1/12 · 14.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New red and violet system line lists for the CN isotopologues 13C14N and 12C15N have been generated. These new transition data are combined with those previously derived for 12C14N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.
    The Astrophysical Journal Supplement Series 10/2014; 214(2):26. DOI:10.1088/0067-0049/214/2/26 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galactic open and globular clusters (OCs, GCs) appear to inhabit separate regions of the age-mass plane. However, the transition between them is not easily defined because there is some overlap between high-mass, old OCs and low-mass, young GCs. We are exploring the possibility of a clear-cut separation between OCs and GCs using an abundance feature that has been found so far only in GCs: (anti)correlations between light elements. Among the coupled abundance trends, the Na-O anticorrelation is the most widely studied. These anticorrelations are the signature of self-enrichment, i.e., of a formation mechanism that implies multiple generations of stars. Here we concentrate on the old, massive, metal-rich OC NGC 6791. We analyzed archival Keck/HIRES spectra of 15 NGC 6791 main sequence turn-off and evolved stars, concentrating on the derivation of C, N, O, and Na abundances. We also used WIYN/Hydra spectra of 21 evolved stars (one is in common). Given the spectral complexity of the very metal-rich NGC 6791 stars, we employed spectrum synthesis to measure most of the abundances. We confirmed the cluster super-solar metallicity and abundances of Ca and Ni that have been derived in past studies. More importantly, we did not detect any significant star-to-star abundance dispersion in C, N, O and Na. Based on the absence of a clear Na-O anticorrelation, NGC 6791 can still be considered a true OC, hosting a single generation of stars, and not a low-mass GC.
    The Astrophysical Journal 09/2014; 796(1). DOI:10.1088/0004-637X/796/1/68 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New red and violet system line lists for the CN isotopologues 13C14N and 12C15N have been generated. These new transition data are combined with those previously derived for 12C14N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright very low-metallicity star HD 122563, and carbon-enhanced metal-poor stars HD 196944 and HD 201626. When lines of both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work generally are also in accord with published values.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a spectroscopic survey of Red Giants in the globular cluster Terzan 8 with the aim of studying its kinematics. We derived accurate radial velocities for 82 stars located in the innermost 7 arcmin from the cluster center identifying 48 bona fide cluster members. The kinematics of the cluster have been compared with a set of dynamical models accounting for the effect of mass segregation and a variable fraction of binaries. The derived velocity dispersion appears to be larger than that predicted for mass-segregated stellar systems without binaries, indicating that either the cluster is dynamically young or it contains a large fraction of binaries (>30%). We detected 7 stars with a radial velocity compatible with the cluster systemic velocity but with chemical patterns which stray from those of both the cluster and the Galactic field. These stars are likely members of the Sagittarius stream surrounding this stellar system.
    Monthly Notices of the Royal Astronomical Society 06/2014; 443(2). DOI:10.1093/mnras/stu1264 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent lines of evidence suggest that globular clusters host multiple stellar populations. It appears that they experience at least two episodes of star formation whereby a fraction of first-generation stars contribute astrated ejecta to form the second generation(s). To identify the polluting progenitors we require distinguishing chemical signatures such as that provided by lithium. Theoretical models predict that lithium can be synthesised in AGB stars, whereas no net Li production is expected from other candidates. It has been shown that in order to reproduce the abundance pattern found in M4, Li production must occur within the polluters, favouring the AGB scenario. Here we present Li and Al abundances for a large sample of RGB stars in M12 and M5. These clusters have a very similar metallicity, whilst demonstrating differences in several cluster properties. Our results indicate that the first-generation and second-generation stars share the same Li content in M12; we recover an abundance pattern similar to that observed in M4. In M5 we find a higher degree of complexity and a simple dilution model fails in reproducing the majority of the stellar population. In both clusters we require Li production across the different stellar generations, but production seems to have occurred to different extents. We suggest that such a difference might be related to the cluster mass with the Li production being more efficient in less-massive clusters. This is the first time a statistically significant correlation between the Li spread within a GC and its luminosity has been demonstrated. Finally, although Li-producing polluters are required to account for the observed pattern, other mechanisms, such as MS depletion, might have played a role in contributing to the Li internal variation, though at relatively low level.
    The Astrophysical Journal 06/2014; 791(1). DOI:10.1088/0004-637X/791/1/39 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We obtained high-resolution spectra for 94 candidate stars belonging to the HB of M 22 with FLAMES. Previous works have indicated that this cluster has split subgiant (SGB) and red giant branches (RGB) and hosts two different stellar populations, differing in overall metal abundance and both exhibiting a Na-O anti-correlation. The HB stars we observed span a restricted temperature range (7800 < T-eff < 11 000 K), where about 60% of the HB stars of M 22 are. Within our sample, we can distinguish three groups of stars segregated (though contiguous) in colours: Group 1 (49 stars) is metal-poor, N-normal, Na-poor, and O-rich: our abundances for this (cooler) group match those determined for the primordial group of RGB stars (a third of the total) from previous studies very well. Group 2 (23 stars) is still metal-poor, but it is N- and Na-rich, though only very mildly depleted in O. We can identify this intermediate group as the progeny of the metal-poor RGB stars that occupy an intermediate location along the Na-O anti-correlation and include about 10% of the RGB stars. The third group (20 stars) is metal-rich, Na-rich, and O-rich. This hotter group most likely corresponds to the most O-rich component of the previously found metal-rich RGB population (a quarter of the total). We did not observe any severely O-depleted stars and we think that the progeny of these stars falls on the hotter part of the HB. Furthermore, we found that the metal-rich population is also over-abundant in Sr, in agreement with results for corresponding RGB and SGB stars. However, we do not find any significant variation in the ratio between the sum of N and O abundances to Fe. We do not have C abundances for our stars. There is some evidence of an enhancement of He content for Groups 2 and 3 stars (Y = 0.338 +/- 0.014 +/- 0.05); the error bar due to systematics is large, but a consistent analysis of data for several GCs confirms that stars in these groups within M 22 are probably overabundant in He. We conclude that on the whole, our results agree with the proposition that chemical composition drives the location of stars along the HB of a GC. Furthermore, we found a number of fast rotators. They are concentrated in a restricted temperature range along the HB of M 22. Fast rotating stars might be slightly less massive and bluer than slowly rotating ones, but other interpretations are possible.
    Astronomy and Astrophysics 03/2014; 563. DOI:10.1051/0004-6361/201323101 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the 12C13C isotopologue Swan d3Π-a3Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the 12C13C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The 12C13C line data were combined with similar data for 12C2, reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C2 Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the 12C13C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C2 lines of the bright red giant Arcturus were also synthesized in the band head regions.
    The Astrophysical Journal Supplement Series 02/2014; 211(1):5. DOI:10.1088/0067-0049/211/1/5 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H]=-2.015+/-0.004+/-0.084 dex (rms=0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are seen also for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. This extreme changes are also seen in giants of the much more massive GCs M 54 and omega Cen, and our conclusion is that NGC 4833 has probably lost a conpicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit.
    Astronomy and Astrophysics 01/2014; 564. DOI:10.1051/0004-6361/201323321 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic spectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
    Astronomy and Astrophysics 01/2014; 563. DOI:10.1051/0004-6361/201323023 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tables with basic data and abundances for 92 HB stars in M22.(4 data files).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive globular clusters (GCs) contain at least two generations of stars with slightly different ages and clearly distinct light elements abundances. The Na-O anticorrelation is the best studied chemical signature of multiple stellar generations. Low-mass clusters appear instead to be usually chemically homogeneous. We are investigating low-mass GCs to understand what is the lower mass limit where multiple populations can form, mainly using the Na and O abundance distribution. We used VLT/FLAMES spectra of giants in the low-mass, metal-poor GC Terzan 8, belonging to the Sagittarius dwarf galaxy, to determine abundances of Fe, O, Na, alpha-, Fe-peak, and neutron-capture elements in six stars observed with UVES and 14 observed with GIRAFFE. The average metallicity is [Fe/H]=-2.27+/-0.03 (rms=0.08), based on the six high-resolution UVES spectra. Only one star, observed with GIRAFFE, shows an enhanced abundance of Na and we tentatively assign it to the second generation. In this cluster, at variance with what happens in more massive GCs, the second generation seems to represent at most a small minority fraction. We discuss the implications of our findings, comparing Terzan 8 with the other Sgr dSph GCs, to GCs and field stars in the Large Magellanic Cloud, Fornax, and in other dwarfs galaxies.
    Astronomy and Astrophysics 11/2013; 561. DOI:10.1051/0004-6361/201322676 · 4.48 Impact Factor

Publication Stats

4k Citations
599.67 Total Impact Points

Institutions

  • 2001–2015
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2014
    • Ege University
      • Department of Astronomy and Space Sciences
      Ismir, İzmir, Turkey
    • Yale University
      New Haven, Connecticut, United States
  • 2012–2014
    • Monash University (Australia)
      • Monash Centre for Astrophysics
      Melbourne, Victoria, Australia
    • Northwestern University
      • Department of Physics and Astronomy
      Evanston, Illinois, United States
  • 2004–2014
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 2013
    • University of Vic
      Vic, Catalonia, Spain
  • 2008–2012
    • Technische Universität München
      • Excellence Cluster Universe
      München, Bavaria, Germany
  • 2002–2010
    • National Institute of Astrophysics
      Roma, Latium, Italy
  • 2006–2007
    • University of Bologna
      Bolonia, Emilia-Romagna, Italy
  • 2003–2005
    • University of Padova
      • Department of Physics and Astronomy "Galileo Galilei"
      Padua, Veneto, Italy
  • 2
    • Michigan State University
      • Department of Physics and Astronomy
      East Lansing, MI, United States