M. Kuster

University of Freiburg, Freiburg, Baden-Württemberg, Germany

Are you M. Kuster?

Claim your profile

Publications (117)89.2 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This extended abstract briefly summarizes ongoing research activity on the evaluation and experimental validation of physics methods for photon and electron transport. The analysis includes physics models currently implemented in Geant4 as well as modeling methods used in other Monte Carlo codes, or not yet considered in general purpose Monte Carlo simulation systems. The validation of simulation models is performed with the support of rigorous statistical methods, which involve goodness-of-fit tests followed by categorical analysis. All results are quantitative, and are fully documented.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The European X-ray Free Electron Laser (XFEL.EU) is an international research facility presently under construction in the area of Hamburg, Germany, which will start its operation at the end of 2016 [1]. The superconducting linear accelerator of the facility will deliver electron bunches with an energy of up to 17.5 GeV, arranged in trains of typically 2700 bunches at a repetition rate of 4.5 MHz. Each train will be followed by a gap of 99.4 ms. Spatially coherent X-rays are generated from the electron bunches in a series of undulators based on the Self-Amplified Spontaneous Emission (SASE) process, in three photon beamlines extending over a length of up to 200 m. Each beamline serves two experiments with different scientific goals.
    Synchrotron Radiation News 07/2014; 27(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detectors to be used at the European XFEL have to deal with the unique time structure of the machine, delivering up to 2700 pulses, with a repetition rate of 4.5 MHz, ten times per second, the very high photon flux and the need to combine single-photon sensitivity and a large dynamic range. This represents a challenge not only for the large-area 2D imaging detectors but also for the smaller-area detectors and makes the use of standard commercial devices impossible. Dedicated solutions are therefore envisaged for small imaging- or strip-detectors. In this contribution the focus is put on two particular small-area detector solutions which are planned to be used at the European XFEL, a strip detector for hard X-rays (with energy 3 < E < 25 keV) and an imaging detector for soft X-rays (0.25 < E < 3 keV). Hard X-rays photon-beam diagnostics as well as hard X-ray absorption and emission spectroscopy at the European XFEL make use of strip detectors as detectors for beam spectrometers or as energy-dispersive detectors in combination with an energy-dispersive element. The European XFEL is establishing cooperation with the Paul Scherrer Institute in Villigen to develop a new version of the Gotthard detector best suited to the European XFEL needs. The use case and the required detector specifications are illustrated. Starting from the present detector version, the modifications planned to adapt it to the European XFEL running conditions are described. These include the capability of running at an increased rate and to provide a veto signal to the large 2D imaging detectors, in order to be able to remove non-interesting images already at early stages of the DAQ system. In another particular application, resonant inelastic X-ray scattering, a Micro-Channel Plate detector matched to a delay-line readout is foreseen to be used. In this case the European XFEL is aiming for a highly customized solution provided by the German company Surface Concept. The use case is described, the science-driven detector specifications are illustrated and the expected detector performance is shown.
    Journal of Instrumentation 05/2014; 9(05):C05063. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CERN Axion Solar Telescope has finished its search for solar axions with He3 buffer gas, covering the search range 0.64 eV≲ma≲1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ≲3.3×10-10 GeV-1 at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.
    Physical Review Letters 03/2014; 112(9):091302. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A MHz frame rate X-ray area detector (LPD - Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 mm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASICs preamplifier provides relatively low noise at high speed which results in a high dynamic range of 10^5 photons over an energy range of 5-20 keV. Small scale prototypes of 32x256 pixels (LPD 2-Tile detector) and 256x256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 10^4 at 12 keV with a readout noise equivalent to <1 photon rms in its most sensitive mode.
    Journal of Instrumentation. 11/2013; 8(11).
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.
    07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The simulation of radioactive decays is a common task in Monte-Carlo systems such as Geant4. Usually, a system either uses an approach focusing on the simulations of every individual decay or an approach which simulates a large number of decays with a focus on correct overall statistics. The radioactive decay package presented in this work permits, for the first time, the use of both methods within the same simulation framework - Geant4. The accuracy of the statistical approach in our new package, RDM-extended, and that of the existing Geant4 per-decay implementation (original RDM), which has also been refactored, are verified against the ENSDF database. The new verified package is beneficial for a wide range of experimental scenarios, as it enables researchers to choose the most appropriate approach for their Geant4-based application.
    IEEE Transactions on Nuclear Science 07/2013; 60(4). · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling.
    IEEE Transactions on Nuclear Science 06/2013; 60(4). · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The European X-ray Free Electron Laser (XFEL.EU) will provide as-yet-unrivaled peak brilliance and ultra-short pulses of spatially coherent X-rays with a pulse length of less than 100 fs in the energy range between 0.25 and 25 keV. The high radiation intensity and ultra-short pulse duration will open a window for novel scientific techniques and will allow to explore new phenomena in biology, chemistry, material science, as well as matter at high energy density, atomic, ion and molecular physics. The variety of scientific applications and especially the unique XFEL.EU time structure require adequate instrumentation to be developed in order to exploit the full potential of the light source. To make optimal use of the unprecedented capabilities of the European XFEL and master these vast technological challenges, the European XFEL GmbH has started a detector R&D program. The technology concepts of the detector system presently under development are complementary in their performance and will cover the requirements of a large fraction of the scientific applications envisaged for the XFEL.EU facility. The actual status of the detector development projects which includes ultra-fast 2D imaging detectors, low repetition rate 2D detectors as well as strip detectors for e.g. spectroscopy applications and the infrastructure for the detectors' calibration and tests will be presented. Furthermore, an overview of the forthcoming implementation phase of the European XFEL in terms of detector R&D will be given.
    Proc SPIE 04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.
    Journal of Cosmology and Astroparticle Physics 02/2013; 1305(010). · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The variety of applications and especially the unique European XFEL time structure will require adequate instrumentation to be developed to exploit the full potential of the light source. Two-dimensional integrating X-ray detectors with ultra-fast read out up to 4.5 MHz for 1024 x 1024 pixel images are under development for a variety of imaging applications. The actual status of the European XFEL detector development projects is presented. Furthermore, an outlook will be given with respect to detector research and development, performance optimization, integration, and commissioning.
    Journal of Physics Conference Series 10/2012; 425(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of $^3$He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with $^4$He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV$ \le m_{a} \le $ 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g$_{a\gamma} \le 2.3\times 10^{-10}$ GeV$^{-1}$ at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown reaching mean upper limits on the axion-photon coupling of g$_{a\gamma} \le 3.5\times 10^{-10}$ GeV$^{-1}$ at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helioscope experiment will be evoked.
    09/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent efforts for the improvement of the accuracy of physics data libraries used in particle transport are summarized. Results are reported about a large scale validation analysis of atomic parameters used by major Monte Carlo systems (Geant4, EGS, MCNP, Penelope etc.); their contribution to the accuracy of simulation observables is documented. The results of this study motivated the development of a new atomic data management software package, which optimizes the provision of state-of-the-art atomic parameters to physics models. The effect of atomic parameters on the simulation of radioactive decay is illustrated. Ideas and methods to deal with physics models applicable to different energy ranges in the production of data libraries, rather than at runtime, are discussed.
    Journal of Physics Conference Series 09/2012; 396(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are identified and their impact is elucidated. Preliminary quantitative results are reported.
    Journal of Physics Conference Series 09/2012; 396(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The astroparticle physics experiment CERN Axion Solar Telescope (CAST) aims to detect hypothetical axions or axion-like particles produced in the Sun by the Primakoff process. A Large Hadron Collider (LHC) prototype superconducting dipole magnet provides a 9 T transverse magnetic field for the conversion of axions into detectable X-ray photons. These photons are detected with an X-ray telescope and a novel type of frame-store CCD detector built from radio-pure materials, installed in the optics focal plane. A novel type of cooling system has been designed and built based on krypton-filled cryogenic heat pipes, made out of oxygen-free radiopure copper, and a Stirling cryocooler as cold source. The heat pipes provide an efficient thermal coupling between the cryocooler and the CCD which is kept at stable temperatures between 150 and 230 K within an accuracy of 0.1 K. A graded-Z radiation shield, also serving as a gas cold-trap operated at 120 K, is implemented to reduce the surface contamination of the CCD window and suppress background radiation.
    06/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the development and prototype test of the LPD instrument, a novel pixel detector for the European XFEL. At XFEL the LPD detector must be capable of operating with a frame rate of 4.5MHz and record images with a dynamic range of 1:100,000 photons (12keV) whilst maintaining low noise. The prototype LPD system has a large in pixel memory depth of 512 images that can be selected with a flexible veto system. Data is then transferred off the detector head in between XFEL pulses with an accompanying high rate data acquisition system. The system has been prototyped and assembled into an LPD detector head that contains custom silicon sensors and ASICs as well as a programmable data acquisition cards and supporting electronics and mechanics. A second version of the ASIC has also been submitted for manufacture. The experiences with our first prototype are presented.
    Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE; 01/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.
    Physical Review Letters 12/2011; 107(26):261302. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of physics data libraries for Monte Carlo simulation are reviewed. The development of a package for the management of physics data is described: its design, implementation and computational benchmarks. This package improves the data management tools originally developed for Geant4 electromagnetic physics models based on data libraries. The implementation exploits recent evolutions of the C++ libraries appearing in the C++0x draft, which are intended for inclusion in the next C++ ISO Standard. The new tools improve the computational performance of physics data management.
    Journal of Physics Conference Series 12/2011; 331(4):042010.

Publication Stats

769 Citations
89.20 Total Impact Points

Institutions

  • 2013
    • University of Freiburg
      Freiburg, Baden-Württemberg, Germany
  • 2007–2013
    • Technical University Darmstadt
      • Institute of Nuclear Physics
      Darmstadt, Hesse, Germany
  • 2012
    • European XFEL
      Hamburg, Hamburg, Germany
  • 2011
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
    • Dogus Universitesi
      İstanbul, Istanbul, Turkey
  • 2010
    • CERN
      Genève, Geneva, Switzerland
  • 2009
    • Ruđer Bošković Institute
      Zagrabia, Grad Zagreb, Croatia
    • Centre D'Etudes Spatiales De La Biosphere
      Tolosa de Llenguadoc, Midi-Pyrénées, France
  • 2005
    • Max Planck Institute of Physics
      München, Bavaria, Germany
  • 1997–2000
    • University of Tuebingen
      • Institute for Astronomy and Astrophysics
      Tübingen, Baden-Württemberg, Germany