A. Buonanno

Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Brandenburg, Germany

Are you A. Buonanno?

Claim your profile

Publications (337)1146.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 \times 10^{-10}$ Hz/s and $+1.5 \times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer FFTs followed by a further incoherent analysis. No evidence for continuous gravitational wave signals was found, therefore we have set a population-based joint VSR2-VSR4 90$\%$ confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 Hz and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted at frequencies below 50 Hz. We set upper limits in the range between about $10^{-24}$ and $2\times 10^{-23}$ at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of $\sim$2 with respect to the results of previous all-sky searches at frequencies below $80~\mathrm{Hz}$.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is $6.87^\circ$ in diameter and centered on $20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29"$, and the other (B) is $7.45^\circ$ in diameter and centered on $8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151"$. We explored the frequency range of 50-1500 Hz and frequency derivative from $0$ to $-5\times 10^{-9}$ Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near $169$ Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude $h_0$ of $6.3\times 10^{-25}$, while at the high end of our frequency range we achieve a worst-case upper limit of $3.4\times 10^{-24}$ for all polarizations and sky locations.
  • Source

  • Source

  • Source

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
    Physical Review Letters 07/2015; 115(3):031102. · 7.51 Impact Factor
  • Source
    Philip B. Graff · Alessandra Buonanno · B. S. Sathyaprakash ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, $M_{\mathrm{obs}}$, from $50\mathrm{M}_{\odot}$ to $500\mathrm{M}_{\odot}$ and mass ratio $1\mbox{--}4$ using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading $(2,2)$ mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, $M_{\mathrm{obs}} \lesssim 50 \mathrm{M}_{\odot}$, the observed chirp mass $\mathcal{M}_{\rm obs} = M_{\mathrm{obs}}\,\eta^{3/5}$ ($\eta$ being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass $M_{\mathrm{obs}}$ has better relative precision than $\mathcal{M}_{\rm obs}$. Indeed, at high $M_{\mathrm{obs}}$ ($\geq 300 \mathrm{M}_{\odot}$), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on $M_{\mathrm{obs}}$. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of $12$, uncertainties in $M_{\mathrm{obs}}$ can be as large as $\sim 20 \mbox{--}25\%$ while uncertainties in $\mathcal{M}_{\rm obs}$ are $\sim 50 \mbox{--}60\%$ in binaries with unequal masses (those numbers become $\sim 17\%$ versus $\sim22\%$ in more symmetric binaries). Although large, those uncertainties will establish the existence of IMBHs. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window. (abridged)
    Physical Review D 04/2015; 92(2). DOI:10.1103/PhysRevD.92.022002 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
    Classical and Quantum Gravity 04/2015; 32(7). DOI:10.1088/0264-9381/32/7/074001 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as $45.5\,M_\odot$. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
    Physical Review Letters 02/2015; 115(3). DOI:10.1103/PhysRevLett.115.031102 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4\times10^{-25}$ on intrinsic strain, $2\times10^{-7}$ on fiducial ellipticity, and $4\times10^{-5}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.
    The Astrophysical Journal 12/2014; 813(1). DOI:10.1088/0004-637X/813/1/39 · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent $\mathcal{F}$-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
    Physical Review D 12/2014; 91(6). DOI:10.1103/PhysRevD.91.062008 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$ M$_\odot$c$^2$ at $\sim 150$ Hz with $\sim 60$ ms duration, and high-energy neutrino emission of $10^{51}$ erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 \times 10^{-2}$ Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
    Physical Review D 11/2014; 90:102002. DOI:10.1103/PhysRevD.90.102002 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95$\%$ confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
    Physical Review D 10/2014; 91(2). DOI:10.1103/PhysRevD.91.022004 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de- tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.
    Classical and Quantum Gravity 10/2014; 32(11). DOI:10.1088/0264-9381/32/11/115012 · 3.17 Impact Factor
  • Source
    Alessandra Buonanno · B. S. Sathyaprakash ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational-wave astronomy will soon become a new tool for observing the Universe. Detecting and interpreting gravitational waves will require deep theoretical insights into astronomical sources. The past three decades have seen remarkable progress in analytical and numerical computations of the source dynamics, development of search algorithms and analysis of data from detectors with unprecedented sensitivity. This Chapter is devoted to examine the advances and future challenges in understanding the dynamics of binary and isolated compact-object systems, expected cosmological sources, their amplitudes and rates, and highlights of results from gravitational-wave observations. All of this is a testament to the readiness of the community to open a new window for observing the cosmos, a century after gravitational waves were first predicted by Albert Einstein.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95\%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
    Physical Review D 10/2014; 91(2). DOI:10.1103/PhysRevD.91.022003 · 4.64 Impact Factor
  • Source
    Keisuke Taniguchi · Masaru Shibata · Alessandra Buonanno ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We calculate quasi-equilibrium sequences of equal-mass, irrotational binary neutron stars (BNSs) in a scalar-tensor (ST) theory of gravity that admits dynamical scalarization. We model neutron stars with realistic equations of state (notably through piecewise polytropic equations of state). Using these quasi-equilibrium sequences we compute the binary's scalar charge and binding energy versus orbital angular frequency. We find that the absolute value of the binding energy is smaller than in general relativity (GR), differing at most by ~14% at high frequencies for the cases considered. We use the newly computed binding energy and the balance equation to estimate the number of gravitational-wave (GW) cycles during the adiabatic, quasi-circular inspiral stage up to the end of the sequence, which is the last stable orbit or the mass shedding point, depending on which comes first. We find that, depending on the ST parameters, the number of GW cycles can be substantially smaller than in GR. In particular, we obtain that when dynamical scalarization sets in around a GW frequency of ~130 Hz, the sole inclusion of the ST binding energy causes a reduction of GW cycles from ~120 Hz up to the end of the sequence (~1200 Hz) of ~11% with respect to the GR case. We estimate that when the ST energy flux is also included the reduction in GW cycles becomes of ~24%. Quite interestingly, dynamical scalarization can produce a difference in the number of GW cycles with respect to the GR point-particle case that is much larger than the effect due to tidal interactions, which is on the order of only a few GW cycles. These results further clarify and confirm recent studies that have evolved BNSs either in full numerical relativity or in post-Newtonian theory, and point out the importance of developing accurate ST-theory waveforms for systems composed of strongly self-gravitating objects, such as BNSs.
    Physical Review D 10/2014; 91(2). DOI:10.1103/PhysRevD.91.024033 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{\odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
    Physical Review Letters 06/2014; 113(1):011102. DOI:10.1103/PhysRevLett.113.011102 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the universe. We carry out a search for the stochastic background with the latest data from LIGO and Virgo. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega_GW(f)=Omega_alpha*(f/f_ref)^alpha, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha=0, we constrain the energy density of the stochastic background to be Omega_GW(f)<5.6x10^-6. For the 600-1000 Hz band, Omega_GW(f)<0.14*(f/900 Hz)^3, a factor of 2.5 lower than the best previously reported upper limits. We find Omega_GW(f)<1.8x10^-4 using a spectral index of zero for 170-600 Hz and Omega_GW(f)<1.0*(f/1300 Hz)^3 for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the detection of inflationary gravitational waves.
    Physical Review Letters 06/2014; 113(23). DOI:10.1103/PhysRevLett.113.231101 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
    Physical Review D 05/2014; 90(6). DOI:10.1103/PhysRevD.90.062010 · 4.64 Impact Factor

Publication Stats

9k Citations
1,146.85 Total Impact Points


  • 2015
    • Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute)
      Potsdam, Brandenburg, Germany
  • 2008-2015
    • Loyola University Maryland
      Baltimore, Maryland, United States
    • Università degli Studi di Salerno
      Fisciano, Campania, Italy
    • NASA
      Вашингтон, West Virginia, United States
  • 2014
    • University of Texas at Brownsville and Texas Southmost College
      Brownsville, Texas, United States
    • University of Nice-Sophia Antipolis
      Nice, Provence-Alpes-Côte d'Azur, France
  • 2013
    • Canadian Institute For Advanced Research
      Toronto, Ontario, Canada
  • 1970-2013
    • University of Maryland, College Park
      • Department of Physics
      Maryland, United States
  • 2012
    • Pierre and Marie Curie University - Paris 6
      • Laboratoire Kastler-Brossel (LKB)
      Lutetia Parisorum, Île-de-France, France
  • 2011-2012
    • Harvard University
      • Radcliffe Institute for Advanced Study
      Cambridge, Massachusetts, United States
  • 2009
    • Stanford University
      • E. L. Ginzton Laboratory
      Palo Alto, California, United States
  • 2000-2006
    • California Institute of Technology
      • • Department of Physics
      • • Jet Propulsion Laboratory
      • • Division of Physics, Mathematics, and Astronomy
      Pasadena, California, United States
  • 2005
    • French National Centre for Scientific Research
      • Institut d'astrophysique spatiale (IAS)
      Lutetia Parisorum, Île-de-France, France
  • 2004
    • University of Birmingham
      • School of Physics and Astronomy
      Birmingham, England, United Kingdom
    • Carleton College
      نورثفیلد، مینه‌سوتا, Minnesota, United States
  • 2003-2004
    • Institut d'astrophysique de Paris
      Lutetia Parisorum, Île-de-France, France
  • 1998
    • Institut des Hautes Études Scientifiques
      Bures-Orsay, Île-de-France, France
  • 1997
    • CERN
      • Theoretical Physics Unit (TH)
      Genève, Geneva, Switzerland
  • 1995-1997
    • Università di Pisa
      Pisa, Tuscany, Italy