S. C. Chapman

Dalhousie University, Halifax, Nova Scotia, Canada

Are you S. C. Chapman?

Claim your profile

Publications (370)1666.05 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infrared Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.
    Physical Review Letters 07/2014; 113(2):021301. · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While wide-field surveys of M31 have revealed much substructure at large radii, understanding the nature and origin of this material is not straightforward from morphology alone. Using deep HST/ACS data, we have derived further constraints in the form of quantitative star formation histories (SFHs) for 14 fields which sample diverse substructures. In agreement with our previous analysis of colour-magnitude diagram morphologies, we find the resultant behaviours can be broadly separated into two categories. The SFHs of 'disc-like' fields indicate that most of their mass has formed since z~1, with one quarter of the mass formed in the last 5 Gyr. We find 'stream-like' fields to be on average 1.5 Gyr older, with <10 percent of their stellar mass formed within the last 5 Gyr. These fields are also characterised by an age--metallicity relation showing rapid chemical enrichment to solar metallicity by z=1, suggestive of an early-type progenitor. We confirm a significant burst of star formation 2 Gyr ago, discovered in our previous work, in all the fields studied here. The presence of these young stars in our most remote fields suggests that they have not formed in situ but have been kicked-out from through disc heating in the recent past.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 um-bright candidate lensing systems identified by the Herschel Multi-tiered Extra-galactic Survey (HerMES) and Herschel Astrophysical Terahertz Survey (H-ATLAS). Out of 87 candidates with near-IR imaging, 15 (~17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and pre- vious lensing models for sub-millimeter galaxies. For four new sources that also have high-resolution sub-mm maps, we test for differential lensing between the stellar and dust components and find that the 880 um magnification factor (u_880) is ~1.5 times higher than the near-IR magnification factor (u_NIR), on average. We also find that the stellar emission is ~2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed kinematic analysis of the outer halo globular cluster (GC) system of M31. Our basis for this is a set of new spectroscopic observations for 78 clusters lying at projected distances between Rproj ~20-140 kpc from the M31 centre. These are largely drawn from the recent PAndAS globular cluster catalogue; 63 of our targets have no previous velocity data. Via a Bayesian maximum likelihood analysis we find that GCs with Rproj > 30 kpc exhibit coherent rotation around the minor optical axis of M31, in the same direction as more centrally- located GCs, but with a smaller amplitude of 86+/-17 km s-1. There is also evidence that the velocity dispersion of the outer halo GC system decreases as a function of projected distance from the M31 centre, and that this relation can be well described by a power law of index ~ -0.5. The velocity dispersion profile of the outer halo GCs is quite similar to that of the halo stars, at least out to the radius up to which there is available information on the stellar kinematics. We detect and discuss various velocity correlations amongst subgroups of GCs that lie on stellar debris streams in the M31 halo. Many of these subgroups are dynamically cold, exhibiting internal velocity dispersions consistent with zero. Simple Monte Carlo experiments imply that such configurations are unlikely to form by chance, adding weight to the notion that a significant fraction of the outer halo GCs in M31 have been accreted alongside their parent dwarf galaxies. We also estimate the M31 mass within 200 kpc via the Tracer Mass Estimator, finding (1.2 - 1.6) +/- 0.2 10^{12}M_sun. This quantity is subject to additional systematic effects due to various limitations of the data, and assumptions built in into the TME. Finally, we discuss our results in the context of formation scenarios for the M31 halo.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
    Physical Review Letters 04/2014; 112(13):131302. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of \Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.
    The Astrophysical Journal 03/2014; 787(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of 30 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.5% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.04/-0.10 (sys) +/- 0.07 (multi), where A_BB = 1 is the fiducial WMAP-9 LCDM value. In this expression, "stat" refers to the statistical uncertainty, "sys" to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and "multi" to the calibration uncertainties that have a multiplicative effect on the measured amplitude A_BB.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3 at z=6.34, exploiting it as a signpost to a potentially biased region of the early Universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an over-density of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbours with confidence, but deeper 450-um imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z>~5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection at 850um of the central source in SSA22-LAB1, the archetypal Lyman-alpha Blob (LAB), a 100kpc-scale radio-quiet emission-line nebula at z=3.1. The flux density of the source, $S_{850}=4.6\pm1.1$mJy implies the presence of a galaxy, or group of galaxies, with a total luminosity of $L_{\rm IR}\approx10^{12}L_\odot$. The position of an active source at the center of a ~50kpc-radius ring of linearly polarized Ly-alpha emission detected by Hayes et al. (2011) suggests that the central source is leaking Ly-alpha photons preferentially in the plane of the sky, which undergo scattering in HI clouds at large galactocentric radius. The Ly-alpha morphology around the submillimeter detection is reminiscent of biconical outflow, and the average Ly-alpha line profiles of the two `lobes' are dominated by a red peak, expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Ly-alpha emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Ly-alpha: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?
    02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential for Planck to detect clusters of dusty, star-forming galaxies at z > 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog sources lying in fields observed by the Herschel Multitiered Extragalactic Survey. Of the 16 Planck sources that lie in the ̃90 sq. deg. examined, we find that 12 are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, star-forming galaxies. We use complementary optical/near-IR data for these `clumps' to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates >1000 M☉ yr-1. The high-redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1-1.5 Gyr old at z ̃ 1-2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
    01/2014; 439(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies at $z>$4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their Spectral Energy Distributions (SED) and a composite model to fit the SEDs. The model includes a stellar emission component at $\lambda_{\rm rest} <$ 3.5$ \mu$m; a hot dust component peaking at $\lambda_{rest} \sim$ 5$\,\mu$m; and cold dust component which becomes significant for $\lambda_{\rm rest} >$ 50$\,\mu$m. Six objects in the sample are detected at 250 and 350$ \mu$m. The dust temperatures for the sources in this sample are in the range of 40$-$80 K, and their $L_{\rm FIR}$ $\sim$ 10$^{13}$ L$_{\odot}$ qualifies them as Hyper$-$Luminous Infrared Galaxies (HyperLIRGs). The mean FIR-radio index for this sample is around $< q > = 2.2$ indicating no radio excess in their radio emission. Most sources in the sample have 24$ \mu$m detections corresponding to a rest-frame 4.5$ \mu$m luminosity of Log$_{10}$(L$_{4.5}$ / L$_{\odot}$) = 11 $\sim$ 11.5. Their L$_{\rm 4.5}$/$L_{\rm FIR}$ ratios are very similar to those of starburst dominated submillimeter galaxies at $z \sim$ 2. The $L_{\rm CO}-L_{\rm FIR}$ relation for this sample is consistent with that determined for local ULIRGs and SMGs at $z \sim$ 2. We conclude that submillimeter galaxies at $z >$ 4 are hotter and more luminous in the FIR, but otherwise very similar to those at $z \sim$ 2. None of these sources show any sign of the strong QSO phase being triggered.
    01/2014; 784(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NGVS-IR project (Next Generation Virgo Survey - Infrared) is a contiguous near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). The current state of NGVS-IR consists of Ks-band imaging of 4 deg^2 centered on M87, and J and Ks-band imaging of 16 deg^2 covering the region between M49 and M87. In this paper, we present the observations of the central 4 deg^2 centered on Virgo's core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope and the total integration time was 41 hours distributed in 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5\sigma limiting magnitude is Ks=24.4 AB mag and the 50% completeness limit is Ks=23.75 AB mag for point source detections, when using only images with better than 0.7" seeing (median seeing 0.54"). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with \mu_Ks=24.4 AB mag arcsec^-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiK color-color diagram which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns needed to continue the exploration of Virgo's photometric and kinematic sub-structures, and will help the design of future searches for globular clusters in extragalactic systems. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiK diagram will address the mapping and analysis of extended structures and compact stellar systems in and around Virgo galaxies.
    The Astrophysical Journal Supplement Series 01/2014; 210:4. · 16.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the faintest, least massive galaxies we are able to observe, dwarf spheroidal galaxies represent the fundamental galactic unit. Their study in the Milky Way has led to several interesting findings and are helping us to better understand the behaviour of dark matter on the smallest scales. In this talk, I will present work from the ongoing PAndAS spectroscopic follow up survey of Andromeda, focusing on our results for its dwarf galaxy population. I will show that by including the masses measured for these objects in our analysis of the mass profiles of all dwarf galaxies, we are able to demonstrate that the notion of a universal mass profile for these most minute of galaxies is false. I will also identify several interesting objects whose properties defy our expectations, and discuss what these mean for our understanding of the physics governing galactic evolution.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary fluctuations in both temperature and polarization of the Cosmic Microwave Background (CMB) reflect the properties of the Universe from the Big Bang until the photons decoupled from matter 380,000 years later. These primary fluctuations are then lensed by large-scale structures (such as clusters of galaxies and filaments of dark matter), with the result that the distribution and properties of dark matter, including the masses of neutrinos, can be determined more accurately by extracting the lensing information than through studying the primary fluctuations alone. Polarization lensing can give cleaner, higher resolution results than temperature lensing. The correlation of lensed CMB polarization with large-scale structure, traced through the Cosmic Infrared Background, was recently detected; however, this correlation does not trace all structure and depends on the relationship between the infrared flux from the galaxies and the underlying mass distribution. Here we report the detection of gravitational lensing directly from CMB polarization measurements. With these data, we have made a census of essentially all structure integrated along the line of sight through the full depth of the observable Universe on 30 square degrees of the sky, and we find good agreement with expectations from the standard Lambda cold-dark matter cosmology.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z=1.62 cluster, Cl0218.3-0510, which lies in the UKIDSS/UDS field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities >1e12 Lo and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit Cycle-1 ALMA submillimeter continuum imaging which covers one of these sources to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalised sense) than clusters at z~0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z=1.6, M(H)~-23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present-day which are less luminous than the descendants of those galaxies which were already passive at z~1.6 (M(H)~-20.5 and M(H)~-21.5 respectively at z~0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z=1.6 and that in Cl0218.3-0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.
    12/2013; 782(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MS$\,$0451.6$-$0305 is a rich galaxy cluster whose strong lensing is particularly prominent at submm wavelengths. We combine new SCUBA-2 data with imaging from Herschel SPIRE and PACS and HST in order to try to understand the nature of the sources being lensed. In the region of the "giant submm arc," we uncover seven multiply imaged galaxies (up from the previously known three), of which six are found to be at a redshift of $z\sim2.9$, and possibly constitute an interacting system. Using a novel forward-modelling approach, we are able to simultaneously deblend and fit SEDs to the individual galaxies that contribute to the giant submm arc, constraining their dust temperatures, far infrared luminosities and star formation rates. The submm arc first identified by SCUBA can now be seen to be composed of at least five distinct sources, four of these within the galaxy group at $z\sim2.9$. The total unlensed luminosity for this galaxy group is $(3.1\pm0.3) \times 10^{12}\,\mathrm{L}_\odot$, which gives an unlensed star formation rate of $(450\pm50)$ M$_\odot$ yr$^{-1}$. From the properties of this system, we see no evidence of evolution towards lower temperatures in the dust temperature versus far-infrared luminosity relation for high redshift galaxies.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite copious substructure, the global halo populations follow closely power law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component. Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<-1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a=1.09+/-0.03), with only a relatively small fraction (42%) residing in discernible stream-like structures. The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams (86% for [Fe/H]>-0.6). The space density of the smooth metal-poor component has a global power-law slope of -3.08+/-0.07, and a non-parametric fit shows that the slope remains nearly constant from 30kpc to 300kpc. The total stellar mass in the halo at distances beyond 2 degrees is 1.1x10^10 Solar masses, while that of the smooth component is 3x10^9 Solar masses. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly 8x10^9 Solar masses. We detect a substantial metallicity gradient, which declines from [Fe/H]=-0.7 at R=30kpc to [Fe/H]=-1.5 at R=150kpc for the full sample, with the smooth halo being 0.2dex more metal poor than the full sample at each radius. While qualitatively in-line with expectations from cosmological simulations, these observations are of great importance as they provide a prototype template that such simulations must now be able to reproduce in quantitative detail.
    The Astrophysical Journal 11/2013; 780(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential for Planck to detect clusters of dusty, star-forming galaxies at z greater than 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog (ERCSC) sources lying in fields observed by the HerMES survey. Of the 16 Planck sources that lie in the roughly 90 sq. deg. examined, we find that twelve are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, starforming galaxies. We use complementary optical and NIR data for these clumps to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates greater than 1000Msun per yr. The high redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1 to 1.5 Gy old at z about 1 to 2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
    11/2013;

Publication Stats

7k Citations
1,666.05 Total Impact Points

Institutions

  • 2013–2014
    • Dalhousie University
      • Department of Physics and Atmospheric Science
      Halifax, Nova Scotia, Canada
    • University of Missouri - Kansas City
      • Department of Physics
      Kansas City, Missouri, United States
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 2007–2014
    • University of Sydney
      • • Sydney Institute of Astronomy (SIfA)
      • • School of Physics
      Sydney, New South Wales, Australia
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2005–2014
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom
  • 2005–2013
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, CA, United States
  • 2001–2013
    • California Institute of Technology
      • • Infrared Processing and Analysis Center
      • • Department of Astronomy
      Pasadena, California, United States
  • 2012
    • Honolulu University
      Honolulu, Hawaii, United States
    • University of Massachusetts Amherst
      • Department of Astronomy
      Amherst Center, Massachusetts, United States
    • University of Chicago
      • Kavli Institute for Cosmological Physics
      Chicago, Illinois, United States
  • 1998–2012
    • University of British Columbia - Vancouver
      • Department of Physics and Astronomy
      Vancouver, British Columbia, Canada
    • Government of British Columbia, Canada
      Vancouver, British Columbia, Canada
  • 2011
    • University of Hawai'i System
      Honolulu, Hawaii, United States
  • 2007–2011
    • Cancer Research UK Cambridge Institute
      Cambridge, England, United Kingdom
  • 2010
    • Cambridge Eco
      Cambridge, England, United Kingdom
  • 2009
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, SCT, United Kingdom
  • 2008
    • National Optical Astronomy Observatory
      Tucson, Arizona, United States
    • Columbia University
      • Columbia Astrophysics Laboratory
      New York City, New York, United States
  • 2007–2008
    • University of Victoria
      • Department of Physics and Astronomy
      Victoria, British Columbia, Canada
  • 2006
    • University of Toronto
      • Department of Astronomy and Astrophysics
      Toronto, Ontario, Canada
  • 2003
    • Durham University
      • Department of Physics
      Durham, England, United Kingdom
    • Australian National University
      • Research School of Astronomy & Astrophysics
      Canberra, Australian Capital Territory, Australia
  • 1999–2001
    • Carnegie Institution for Science
      Washington, West Virginia, United States