Are you Linda Lewis?

Claim your profile

Publications (3)23.4 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of diabetic nephropathy is complex and involves activation of multiple pathways leading to kidney damage. An important role for altered lipid metabolism via sterol regulatory element binding proteins (SREBPs) has been recently recognized in diabetic kidney disease. Our previous studies have shown that the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, modulates renal SREBP-1 expression. The purpose of the present study was then to determine if FXR deficiency accelerates type 1 diabetic nephropathy in part by further stimulation of SREBPs and related pathways, and conversely, if a selective FXR agonist can prevent the development of type 1 diabetic nephropathy. Insulin deficiency and hyperglycemia were induced with streptozotocin (STZ) in C57BL/6 FXR KO mice. Progress of renal injury was compared with nephropathy-resistant wild-type C57BL/6 mice given STZ. DBA/2J mice with STZ-induced hyperglycemia were treated with the selective FXR agonist INT-747 for 12 weeks. To accelerate disease progression, all mice were placed on the Western diet after hyperglycemia development. The present study demonstrates accelerated renal injury in diabetic FXR KO mice. In contrast, treatment with the FXR agonist INT-747 improves renal injury by decreasing proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis, and modulating renal lipid metabolism, macrophage infiltration, and renal expression of SREBPs, profibrotic growth factors, and oxidative stress enzymes in the diabetic DBA/2J strain. Our findings indicate a critical role for FXR in the development of diabetic nephropathy and show that FXR activation prevents nephropathy in type 1 diabetes.
    Diabetes 11/2010; 59(11):2916-27. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular calcification is highly associated with cardiovascular morbidity and mortality, especially in patients with chronic kidney disease. The nuclear receptor farnesoid X receptor (FXR) has been implicated in the control of lipid, carbohydrate and bile acid metabolism in several cell types. Although recent studies have shown that FXR is also expressed in vascular smooth muscle cells, its physiological role in vasculature tissue remains obscure. Here, we have examined the role of FXR in vascular calcification. The FXR gene, a bile acid nuclear receptor, was highly induced during osteogenic differentiation of bovine calcifying vascular cells (CVCs) and in the aorta of apolipoprotein (Apo)E(-/-) mice with chronic kidney disease which are common tissue culture and mouse model, respectively, for aortic calcification. FXR activation by a synthetic FXR agonist, 6alpha-ethyl chenodeoxycholic acid (INT-747) inhibited phosphate induced-mineralization and triglyceride accumulation in CVCs. FXR dominant negative expression augmented mineralization of CVCs and blocked the anticalcific effect of INT-747 whereas VP16FXR that is a constitutively active form reduced mineralization of CVCs. INT-747 treatment also increased phosphorylated c-Jun N-terminal kinase (JNK). SP600125 (specific JNK inhibitor) significantly induced mineralization of CVCs and alkaline phosphatase expression, suggesting that the anticalcific effect of INT-747 is attributable to JNK activation. We also found that INT-747 ameliorates chronic kidney disease induced-vascular calcification in 5/6 nephrectomized ApoE(-/-) mice without affecting the development of atherosclerosis. These observations provide direct evidence that FXR is a key signaling component in regulation of vascular osteogenic differentiation and, thus representing a promising target for the treatment of vascular calcification.
    Circulation Research 06/2010; 106(12):1807-17. · 11.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet-induced obesity is associated with proteinuria and glomerular disease in humans and rodents. We have shown that in mice fed a high-fat diet, increased renal expression of the transcriptional factor sterol-regulatory element binding protein-1 (SREBP-1) plays a critical role in renal lipid accumulation and increases the activity of proinflammatory cytokines and profibrotic growth factors. In the current study, we have determined a key role of the farnesoid X receptor (FXR) in modulating renal SREBP-1 activity, glomerular lesions, and proteinuria. We found that feeding a Western-style diet to DBA/2J mice results in proteinuria, podocyte loss, mesangial expansion, renal lipid accumulation, and increased expression of proinflammatory factors, oxidative stress, and profibrotic growth factors. Treatment of these mice with the highly selective and potent FXR-activating ligand 6-alpha-ethyl-chenodeoxycholic acid (INT-747) ameliorates triglyceride accumulation by modulating fatty acid synthesis and oxidation, improves proteinuria, prevents podocyte loss, mesangial expansion, accumulation of extracellular matrix proteins, and increased expression of profibrotic growth factors and fibrosis markers, and modulates inflammation and oxidative stress. Our results therefore indicate that FXR activation could represent an effective therapy for treatment of abnormal renal lipid metabolism with associated inflammation, oxidative stress, and kidney pathology in patients affected by obesity.
    AJP Renal Physiology 09/2009; 297(6):F1587-96. · 4.42 Impact Factor