L. R. Bedin

National Institute of Astrophysics, Roma, Latium, Italy

Are you L. R. Bedin?

Claim your profile

Publications (180)515.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Using two HST/ACS data-sets that are separated by ~2 years has allowed us to derive the relative proper-motion for the Sagittarius dwarf irregular (SagDIG) and reduce the heavy foreground Galactic contamination. The proper-motion decontaminated SagDIG catalog provides a much clearer view of the young red-supergiant and intermediate-age asymptotic giant branch populations. We report the identification of 3 Milky Way carbon-rich dwarf stars, probably belonging to the thin disk, and pointing to the high incidence of this class at low Galactic latitudes. A sub-group of 4 oxygen-rich candidate stars depicts a faint, red extension of the well-defined SagDIG carbon-rich sequence. The origin of these oxygen-rich candidate stars remains unclear, reflecting the uncertainty in the ratio of carbon/oxygen rich stars. SagDIG is also a gas-rich galaxy characterized by a single large cavity in the gas disk (HI-hole), which is offset by ~360 pc from the optical centre of the galaxy. We nonetheless investigate the stellar feedback hypothesis by comparing the proper-motion cleaned stellar populations within the HI-hole with appropriately selected comparison regions, having higher HI densities external to the hole. The comparison shows no significant differences. In particular, the centre of the HI-hole (and the comparison regions) lack stellar populations younger than ~400 Myr, which are otherwise abundant in the inner body of the galaxy. We conclude that there is no convincing evidence that the SagDIG HI-hole is the result of stellar feedback, and that gravitational and thermal instabilities in the gas are the most likely mechanism for its formation.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. With the purpose of determining the orbital parameters of exoplanetary systems from observational data, we have developed a software, named TRADES (TRAnsits and Dynamics of Exoplanetary Systems) to simultaneously fit observed radial velocities and transit times data. Methods. We implemented a dynamical simulator for N-body system which also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, $\chi^2$ minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis. Results. To validate TRADES, we tested the code on a synthetic three-body system and on two real systems discovered by the Kepler mission: Kepler-9 and Kepler-11. These systems are good benchmarks to test multiple exoplanet systems showing transit time variations (TTVs) due to the gravitational interaction among planets. We have found orbital parameters of Kepler-11 planets in good agreement with the values proposed in the discovery paper and with a a recent work from the same authors. We analyzed the first three quarters of Kepler-9 system and found parameters in partial agreement with discovery paper. Analyzing transit times (T0s) covering 12 quarters of Kepler data we have found a new best-fit solution. This solution outputs masses that are about the 55% of the values proposed in the discovery paper; this leads to a reduced semi-amplitude of the radial velocities of about 12.80 m/s.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planetary system formed by a planet that is slightly more massive than Jupiter at 0.48 au and a Saturn-mass planet at 0.13 au. Both planetary orbits are moderately eccentric and were found to be dynamically stable. There are also indications of a long-term trend in the radial velocities. This is the first confirmed case of a wide binary whose components both host planets, one of which is transiting, which makes the XO-2 system a unique laboratory for understanding the diversity of planetary systems.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The VISTA Variables in the V\'ia L\'actea (VVV) survey is one of six public ESO surveys, and is now in its 4th year of observing. Although far from being complete, the VVV survey has already delivered many results, some directly connected to the intended science goals (detection of variables stars, microlensing events, new star clusters), others concerning more exotic objects, e.g. novae. Now, at the end of the fourth observing period, and comprising roughly 50% of the proposed observations, the actual status of the survey, as well some of the results based on the VVV data, are presented.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: NGC1851 is surrounded by a stellar component that extends more than ten times beyond the tidal radius. Although the nature of this stellar structure is not known, it has been suggested to be a sparse halo of stars or associated with a stellar stream. We analyse the nature of this intriguing stellar component surrounding NGC1851 by investigating its radial velocities and chemical composition, in particular in comparison with those of the central cluster analysed in a homogeneous manner. In total we observed 23 stars in the halo with radial velocities consistent with NGC1851, and for 15 of them we infer [Fe/H] abundances. Our results show that: (i) stars dynamically linked to NGC1851 are present at least up to ~2.5 tidal radii, supporting the presence of a halo of stars surrounding the cluster; (ii) apart from the NGC1851 radial velocity-like stars, our observed velocity distribution agrees with that expected from Galactic models, suggesting that no other sub-structure (such as a stream) at different radial velocities is present in our field; (iii) the chemical abundances for the s-process elements Sr and Ba are consistent with the s-normal stars observed in NGC1851; (iv) all halo stars have metallicities, and abundances for the other studied elements Ca, Mg and Cr, consistent with those exhibited by the cluster. The complexity of the whole NGC1851 cluster+halo system may agree with the scenario of a tidally-disrupted dwarf galaxy in which NGC1851 was originally embedded.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present four new light curves of transiting exoplanets WASP-1b and HAT-P-20b, observed within the TASTE (The Asiago Search for Transit timing variations of Exoplanets) project. We re-analyzed light curves from the literature in a homogeneous way, calculating a refined ephemeris and orbital-physical parameters for both objects. WASP-1b does not show any significant Transit Timing Variation signal at the 120 s-level. As for HAT-P-20b, we detected a deviation from our re-estimated linear ephemeris that could be ascribed to the presence of a perturber or, more probably, to a previously unnoticed high level of stellar activity. The rotational period of HAT-P-20 A we obtained from archival data (P_rot ~ 14.5 days), combined with its optical variability and strong emission of CaII H&K lines, is consistent with a young stellar age (< 1 Gyr) and support the hypothesis that stellar activity may be responsible of the measured deviations of the transit times.
    Astronomische Nachrichten 05/2014; 335(8). · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a photometric search for variable stars in the core of the Galactic globular cluster M4. The input data are a large and unprecedented set of deep Hubble Space Telescope WFC3 images (large program GO-12911; 120 orbits allocated), primarily aimed at probing binaries with massive companions by detecting their astrometric wobbles. Though these data were not optimised to carry out a time-resolved photometric survey, their exquisite precision, spatial resolution and dynamic range enabled us to firmly detect 38 variable stars, of which 20 were previously unpublished. They include 19 cluster-member eclipsing binaries (confirming the large binary fraction of M4), RR Lyrae, and objects with known X-ray counterparts. We improved and revised the parameters of some among published variables.
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present four new light curves of transiting exoplanets WASP-1b and HAT-P-20b, observed within the TASTE (The Asiago Search for Transit timing variations of Exoplanets) project. We re-analyzed light curves from the literature in a homogeneous way, calculating a refined ephemeris and orbital-physical parameters for both objects. WASP-1b does not show any significant Transit Timing Variation signal at the 120 s-level. As for HAT-P-20b, we detected a deviation from our re-estimated linear ephemeris that could be ascribed to the presence of a perturber or, more probably, to a previously unnoticed high level of stellar activity. The rotational period of HAT-P-20 A we obtained from archival data (P_rot ~ 14.5 days), combined with its optical variability and strong emission of CaII H&K; lines, is consistent with a young stellar age (< 1 Gyr) and support the hypothesis that stellar activity may be responsible of the measured deviations of the transit times.
    04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a photometric search for variable stars in the core of the Galactic globular cluster M4. The input data are a large and unprecedented set of deep Hubble Space Telescope WFC3 images (large program GO-12911; 120 orbits allocated), primarily aimed at probing binaries with massive companions by detecting their astrometric wobbles. Though these data were not optimised to carry out a time-resolved photometric survey, their exquisite precision, spatial resolution and dynamic range enabled us to firmly detect 38 variable stars, of which 20 were previously unpublished. They include 19 cluster-member eclipsing binaries (confirming the large binary fraction of M4), RR Lyrae, and objects with known X-ray counterparts. We improved and revised the parameters of some among published variables.
    04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The horizontal-branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC and the other a nonglobal parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys of the Hubble Space Telescope and analyze the color-magnitude diagrams of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the red giant branch and the coolest part of the HB and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterized by ?Y and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among ?Y, GC mass, and L2. We conclude that age and metallicity are the main global parameters, while the range of helium abundance within a GC is the main nonglobal parameter defining the HB morphology of Galactic GCs.
    The Astrophysical Journal 03/2014; 785(1):21. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET. Additional RV data come from CORALIE at the Euler Swiss Telescope. We aim to perform a long-term study on giant planet formation in open clusters and determine how it depends on stellar mass and chemical composition. We report the detection of three new extrasolar planets: two in orbit around the two G dwarfs YBP1194 and YBP1514, and one around the evolved star S364. The orbital solution for YBP1194 yields a period of 6.9 days, an eccentricity of 0.24, and a minimum mass of 0.34 Mj. YBP1514 shows periodic RV variations of 5.1 days, a minimum mass of 0.40 Mj, and an eccentricity of 0.39. The best Keplerian solution for S364 yields a period of 121.7 days, an eccentricity of 0.35 and a minimum mass of 1.54 Mj. An analysis of H_alpha core flux measurements as well as of the line bisectors spans revealed no correlation with the RV periods, indicating that the RV variations are best explained by the presence of a planetary companion. Remarkably, YBP1194 is one of the best solar twins identified so far, and YBP1194b is the first planet found around a solar twin that belongs to a stellar cluster. In contrast with early reports and in agreement with recent findings, our results show that massive planets around stars of open clusters are as frequent as those around field stars.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The M4 Core Project with HST is designed to exploit the Hubble Space Telescope to investigate the central regions of M4, the Globular Cluster closest to the Sun. In this paper we combine optical and near-infrared photometry to study multiple stellar populations in M4. We detected two sequences of M-dwarfs containing ~38% (MS_I) and ~62% (MS_II) of MS stars below the main-sequence (MS) knee. We compare our observations with those of NGC2808, which is the only other GCs where multiple MSs of very low-mass stars have been studied to date. We calculate synthetic spectra for M-dwarfs, assuming the chemical composition mixture inferred from spectroscopic studies of stellar populations along the red giant branch, and different Helium abundances, and we compare predicted and observed colors. Observations are consistent with two populations, one with primordial abundance and another with enhanced nitrogen and depleted oxygen.
    01/2014; 439(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We re-visit the issue of the time-dependency variation of the linear terms in the ACS/WFC geometric distortion. We performed a detailed photometric/astrometric study using F606W FLT and FLC images from the calibration field near globular cluster 47 Tucanae. We analyzed the time dependency of the linear terms by comparing individual observations with a standard catalog. A previous calibration of these drifts proved to be able to restore positions to the milli-arcsecond level for pre-SM4 data. We confirm this previously existing solution and we provide new and simple corrections for both FLT and FLC images that will allow observers to perform global astrometric studies with 0.02 WFC pixel precision using both pre- and post- SM4 images.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The horizontal branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC, and the other a non-global parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST) and analyse the CMDs of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the RGB and the coolest part of the HB, and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterised by Delta Y and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among Delta Y, GC mass, and L2. We conclude that age and metallicity are the main global parameters while the range of helium abundance within a GC is the main non-global parameter defining the HB morphology of Galactic GCs.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the ACS Treasury Program (PI: Ata Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson (2000, 2005). We focus on the transformation between the HST/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al.(2005) with respect to their dependence on metallicity, Horizontal Branch morphology, mass and integrated (V-I) colour of the various globular clusters. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and Horizontal Branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find the photometric offset to be linked to multiple stellar populations, e.g., as found in NGC 0288, NGC 1851, and NGC 5139. The results of this study show that there are small systematic offsets between the transformed ACS- and observed ground based photometry, and that these are only weakly correlated, if at all, with various cluster parameters and their underlying stellar populations. As a result, investigators wishing to transform globular cluster photometry from the Sirianni et al.(2005) ground-based V, I system onto the Stetson (2000) system simply need to add 0.040 (+/-0.012) to the V-band magnitudes and 0.047 (+/-0.011) to the I-band magnitudes. This in turn means that the transformed ACS (V-I) colours match the ground-based values from Stetson (2000) to within ~0.01 mag.
    The Astrophysical Journal Supplement Series 12/2013; 211(1). · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an overview of the ongoing Hubble Space Telescope large program GO-12911. The program is focused on the core of M 4, the nearest Galactic globular cluster, and the observations are designed to constrain the number of binaries with massive companions (black holes, neutron stars, or white dwarfs) by measuring the “wobble” of the luminous (mainsequence) companion around the center of mass of the pair, with an astrometric precision of ∼50 µas. The high spatial resolution and stable medium-band PSFs of WFC3/UVIS will make these measurements possible. In this work we describe (i) the motivation behind this study, (ii) our observing strategy, (iii) the many other investigations enabled by this unique data set, and which of those our team is conducting, and (iv) a preliminary reduction of the first-epoch dataset collected on 2012 October 10. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    Astronomische Nachrichten 12/2013; 334(10). · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the VLT FLAMES+GIRAFFE spectrograph at VLT. These medium resolution spectra cover by a small wavelength range, and often have very low signal-to-noise ratios. We attacked this dataset by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 Red Giant Branch stars with $V \leq 14.7$ we obtain a nearly constant metallicity, $<[{\rm Fe}/{\rm H}]> = -1.07$ ($\sigma$ = 0.02). No difference in the metallicity at the level of $0.01 ~\textrm{dex}$ is observed between the two RGB sequences identified by \cite{Monelli:2013us}. For 1869 Subgiant and Main Sequence Stars $V > 14.7$ we obtain $<[{\rm Fe}/{\rm H}]> = -1.16$ ($\sigma$ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than two thousand stars, using a dataset that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.
    The Astronomical Journal 11/2013; 147(2). · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an abundance analysis of 96 horizontal branch (HB) stars in NGC2808, a globular cluster exhibiting a complex multiple stellar population pattern. These stars are distributed in different portions of the HB and cover a wide range of temperature. By studying the chemical abundances of this sample, we explore the connection between HB morphology and the chemical enrichment history of multiple stellar populations. For stars lying on the red HB, we use GIRAFFE and UVES spectra to determine Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, and Nd abundances. For colder, blue HB stars, we derive abundances for Na, primarily from GIRAFFE spectra. We were also able to measure direct NLTE He abundances for a subset of these blue HB stars with temperature higher than ~9000 K. Our results show that: (i) HB stars in NGC2808 show different content in Na depending on their position in the color-magnitude diagram, with blue HB stars having higher Na than red HB stars; (ii) the red HB is not consistent with an uniform chemical abundance, with slightly warmer stars exhibiting a statistically significant higher Na content; and (iii) our subsample of blue HB stars with He abundances shows evidence of enhancement with respect to the predicted primordial He content by Delta(Y)=+0.09+-0.01. Our results strongly support theoretical models that predict He enhancement among second generation(s) stars in globular clusters and provide observational constraints on the second-parameter governing HB morphology.
    Monthly Notices of the Royal Astronomical Society 10/2013; 437(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. The ESO public survey VISTA variables in the Vía Láctea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims: We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods: The observations are carried out on the 4-m VISTA telescope in the ZYJHKs filters. In addition to the multi-band imaging the variability monitoring campaign in the Ks filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results: The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHKs filters taken in the 2010 observing season. The typical image quality is 0.9 arcsec {-1.0 arcsec}. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHKs images in the disk area and 90% of the JHKs images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 × 108 stellar sources in the bulge and 1.68 × 108 in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 × 108 stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHKs bands extend typically 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for Ks = 15-18 mag has rms 35-175 mas. Conclusions: The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.
    Astronomy and Astrophysics 08/2013; 537:A107. · 5.08 Impact Factor

Publication Stats

3k Citations
515.06 Total Impact Points

Institutions

  • 2013–2014
    • National Institute of Astrophysics
      Roma, Latium, Italy
    • Australian National University
      • Research School of Astronomy & Astrophysics
      Canberra, Australian Capital Territory, Australia
  • 2010–2014
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2011–2013
    • Instituto de Astrofísica de Canarias
      San Cristóbal de La Laguna, Canary Islands, Spain
  • 2008–2013
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2001–2012
    • University of Padova
      • Department of Physics and Astronomy "Galileo Galilei"
      Padua, Veneto, Italy
  • 2006–2008
    • European Southern Observatory
      Arching, Bavaria, Germany
  • 2005
    • Yale University
      • Department of Astronomy
      New Haven, Connecticut, United States