A G Bader

Asuragen, Austin, Texas, United States

Are you A G Bader?

Claim your profile

Publications (5)29.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TOJ3 gene was originally identified on the basis of its specific activation in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17). Overexpression of TOJ3 induces cellular transformation of embryonic avian fibroblasts, revealing an intrinsic oncogenic potential. Transforming activity has also been demonstrated for MSP58, the human homolog of TOJ3, and oncogenic cell transformation by MSP58 is specifically inhibited by the tumor suppressor PTEN. To investigate the mechanism of aberrant TOJ3 gene activation in jun-transformed fibroblasts, the entire quail TOJ3 gene including 13 exons and the 5′ regulatory region was isolated. Functional analyses of the promoter by transcriptional transactivation assays revealed that the specific induction of TOJ3 is mediated by a cluster of three noncanonical AP-1 binding motifs (5′-CAGCTCA-3′ or 5′-CACCTCA-3′) which share the 3′ half-site with the consensus motif (5′-TGAC/GTCA-3′). Electrophoretic mobility shift assays and chromatin immunoprecipitation analyses showed that Jun binds to these motifs with an affinity similar to that observed for binding to an AP-1 consensus site. Noncanonical binding sites are also present in the chicken and human TOJ3/MSP58 promoter regions. These results confirm and extend the previous observation that TOJ3 represents an immediate effector gene of Jun and may point to an essential role of TOJ3/MSP58 in carcinogenesis involving aberrant AP-1 expression.
    Virology 09/2008; · 3.35 Impact Factor
  • M Hartl, A G Bader, K Bister
    [Show abstract] [Hide abstract]
    ABSTRACT: The Jun oncoprotein is a major component of the transcription factor complex AP-1, which regulates the expression of multiple genes essential for cell proliferation, differentiation and apoptosis. Constitutive activation of endogenous AP-1 is required for tumor formation in avian and mammalian cell transformation systems, and also occurs in distinct human tumor cells suggesting that AP-1 plays an important role in human oncogenesis. The highly oncogenic v-jun allele capable of inducing neoplastic transformation in avian fibroblasts and fibrosarcomas in chicken as a single oncogenic event, was generated by mutation of the cellular c-jun gene during retroviral transduction. Hence, avian cells represent an excellent model system to investigate molecular mechanisms underlying jun-induced cell transformation. Approaches aimed at the identification of genes specifically deregulated in jun-transformed fibroblasts have led to the identification of several genes targeted by oncogenic Jun. Some of the activated genes represent direct transcriptional targets of Jun encoding proteins, which are presumably involved in cell growth and differentiation. Genes suppressed in v-jun-transformed cells include several extracellular proteins like components of the extracellular matrix or proteins involved in extracellular signalling. Due to aberrant regulation of multiple genes by the Jun oncoprotein, it is assumed that only the combined differential expression of Jun target genes or of a subset thereof contributes to the conversion of a normal fibroblast into a tumor cell displaying a phenotype typical of jun-induced cell transformation. It has already been shown that distinct activated targets exhibit partial transforming activity upon over-expression in avian fibroblasts. Also, distinct target genes silenced by v-Jun inhibit tumor formation when re-expressed in v-jun-transformed cells. The protein products of these transformation-relevant genes may thus represent potential drug targets for interference with jun-induced tumorigenesis.
    Current Cancer Drug Targets 03/2003; 3(1):41-55. · 4.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using the established quail cell line Q/d3 conditionally transformed by the v-jun oncogene, cDNA clones (TOJ2, TOJ3, TOJ5, TOJ6) were isolated by representational difference analysis (RDA) that correspond to genes which were induced immediately upon conditional activation of v-jun. One of these genes, TOJ3, is immediately and specifically activated after doxycycline-mediated v-jun induction, with kinetics similar to the induction of well characterized direct AP-1 target genes. TOJ3 is neither activated upon conditional activation of v-myc, nor in cells or cell lines non-conditionally transformed by oncogenes other than v-jun. Sequence analysis revealed that the TOJ3-specific cDNA encodes a 530-amino acid protein with significant sequence similarities to the murine or human microspherule protein 1 (MCRS1, MSP58), a nucleolar protein that directly interacts with the ICP22 regulatory protein from herpes simplex virus 1 or with p120, a proliferation-related protein expressed at high levels in most human malignant tumor cells. Similar to its mammalian counterparts, the TOJ3 protein contains a bipartite nuclear localization motif and a forkhead associated domain (FHA). Using polyclonal antibodies directed against a recombinant amino-terminal TOJ3 protein segment, the activation of TOJ3 in jun-transformed fibroblasts was also demonstrated at the protein level by specific detection of a polypeptide with an apparent M(r) of 65 000. Retroviral expression of the TOJ3 gene in quail or chicken embryo fibroblasts induces anchorage-independent growth, indicating that the immediate activation of TOJ3 in fibroblasts transformed by the v-jun oncogene contributes to cell transformation.
    Oncogene 12/2001; 20(51):7524-35. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian fibrosarcomas. Kinetic analysis using a doxycycline-controlled conditional cell transformation system showed that expression of the 0.8-kb JAC mRNA is induced rapidly upon activation of the oncogenic v-jun allele. Nucleotide sequence analysis and transcriptional mapping revealed that the JAC gene contains two exons, with the longest ORF confined to exon 2. The deduced 68-amino acid chicken JAC protein is rich in cysteine residues and displays 37% sequence identity to mammalian high-sulfur keratin-associated proteins. The promoter region of JAC contains a consensus (5'-TGACTCA-3') and a nonconsensus (5'-TGAGTAA-3') AP-1 binding site in tandem, which are both specifically bound by the Gag-Jun hybrid protein encoded by ASV17. Mutational analysis revealed that the two AP-1 sites confer strong transcriptional activation by Gag-Jun in a synergistic manner. Ectopic expression of JAC in avian fibroblasts leads to anchorage-independent growth, strongly suggesting that deregulation of JAC is an essential event in jun-induced cell transformation and tumorigenesis.
    Proceedings of the National Academy of Sciences 12/2001; 98(24):13601-6. · 9.81 Impact Factor
  • Source
    A G Bader, M Hartl, K Bister
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the molecular basis of oncogenesis induced by the v-jun oncogene of avian sarcoma virus 17 (ASV17), we developed a conditional cell transformation system in which transcription of the ASV17 v-jun allele is controlled by a doxycycline-sensitive transactivator (tTA) or a reverse (doxycycline-dependent) transactivator (rtTA), respectively. Permanent cell lines of quail embryo fibroblasts conditionally transformed by a doxycycline-controlled v-jun allele revert to the normal phenotype within 3 days and lose their ability to grow in soft agar, strictly dependent on the addition or removal of the drug, respectively. The reverted cells are rapidly retransformed on conditional activation of v-jun. While full-level synthesis of v-jun mRNA and v-Jun protein in these cells is established within 2 and 14 h, respectively, after switching to the permissive conditions, the first morphological alterations are observed after 24 h, and as early as 2 days later the morphology has changed entirely from flat cells resembling normal fibroblasts to spindle-shaped fusiform cells showing a typical jun-transformed phenotype. Kinetic expression analysis revealed that transcriptional activation of the direct jun target gene BKJ precisely coincides with the establishment of full-level v-Jun protein synthesis. Furthermore, we have analyzed the expression of a novel candidate v-jun target gene, termed JAC, which shows no sequence homology to known genes. Similar to BKJ, JAC is specifically activated in jun-transformed fibroblasts, and induction of JAC is tightly linked to the conditional expression of oncogenic v-Jun. These results demonstrate the high stringency of the doxycycline-controlled v-jun expression system, and they also indicate that expression of v-jun in these cells is indispensable for enhanced proliferation, cell transformation, and the induction of specific expression patterns of downstream target genes.
    Virology 05/2000; 270(1):98-110. · 3.37 Impact Factor