C I Lee

Johns Hopkins Medicine, Baltimore, Maryland, United States

Are you C I Lee?

Claim your profile

Publications (3)14.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen free radicals (OFR) play a primary role in ischemia-reperfusion-mediated vascular dysfunction and this is paralleled by a loss of endothelial nitric oxide synthase (eNOS) activity. The authors tested whether a direct exposure to OFR may affect vascular relaxation by altering nitric oxide (NO) release. Effects of electrolysis(EL)-generated OFR on basal and agonist-evoked NO release were monitored in isolated rat hearts by oxyhemoglobin assay. Electrolysis-induced changes were compared with those obtained after 30 min perfusion with NOS and cyclooxygenase (COX) inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) and indomethacin (INDO, 1 m M). Electrolysis-generated hydroxyl radical (.OH) formed by.O2-and H2O2 via the Fenton reaction as revealed by Electron Paramagnetic Resonance (EPR). After EL, basal NO release declined by 60% and coronary perfusion pressure (CPP) increased by approximately 70%. L-NAME/INDO perfusion similarly lowered NO release (-63%) but increased CPP less than EL (56+/-3%P<0.03 v post-EL). In presence of excess substrates and cofactors eNOS activity was not affected by EL. Both acetylcholine (ACh; 1 microM) and bradykinin (BK; 10 n M) had minimal effect in reversing EL-induced vasoconstriction, whereas both partially reversed L -NAME/INDO-mediated constriction. Sodium nitroprusside (SNP, 1 microM) completely reversed L-NAME/INDO constriction and partly countered that after EL (-38+/-2.5, P<0.001). Acetylcholine-evoked NO release was nearly abolished by both treatments whereas BK still elicited partial NO release after eNOS/cyclooxygenase inhibition (P<0.001) but not after EL. In conclusion, OFR severely impair NO-mediated coronary vasorelaxation affecting both basal and agonist-evoked NO release but not eNOS activity. However, EL also significantly blunts NOS/COX-independent vasodilation suggesting alteration of other vasodilatative pathways.
    Journal of Molecular and Cellular Cardiology 04/2001; 33(4):671-9. DOI:10.1006/jmcc.2000.1334 · 5.22 Impact Factor
  • C.-i. Lee, K Miura, XP Liu, J L Zweier
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the NADPH oxidase-derived oxidant burst of polymorphonuclear leukocytes (PMNs) is of critical importance in inflammatory disease. PMN-derived superoxide (O(2)) can be scavenged by nitric oxide (NO( small middle dot)) with the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the effects and mechanisms by which NO( small middle dot) and ONOO(-) modulate the PMN oxidative burst. Therefore, we directly measured the dose-dependent effects of NO( small middle dot) and ONOO(-) on O(2) generation from human PMNs stimulated with phorbol 12-myristate 13-acetate using EPR spin trapping. Pretreatment with low physiological (microm) concentrations of NO( small middle dot) from NO( small middle dot) gas had no effect on PMN O(2) generation, whereas high levels (> or =50 microm) exerted inhibition. With ONOO(-) pretreatment, however, a biphasic modulation of O(2) generation was seen with stimulation by microm levels, but inhibition at higher levels. With the NO( small middle dot) donor NOR-1, which provides more sustained release of NO( small middle dot) persisting at the time of O(2) generation, a similar biphasic modulation of O(2) generation was seen, and this was inhibited by ONOO(-) scavengers. The enhancement of O(2) generation by low concentrations of ONOO(-) or NOR-1 was associated with activation of the ERK MAPKs and was blocked by their inhibition. Thus, low physiological levels of NO( small middle dot) present following PMN activation are converted to ONOO(-), which enhances O(2) generation through activation of the ERK MAPK pathway, whereas higher levels of NO( small middle dot) or ONOO(-) feed back and inhibit O(2) generation. This biphasic concentration-dependent regulation of the PMN oxidant burst by NO( small middle dot)-derived ONOO(-) may be of critical importance in regulating the process of inflammation.
    Journal of Biological Chemistry 01/2001; 275(50):38965-72. DOI:10.1074/jbc.M006341200 · 4.60 Impact Factor
  • C I Lee, XP Liu, J L Zweier
    [Show abstract] [Hide abstract]
    ABSTRACT: Xanthine oxidase (XO) is a central mechanism of oxidative injury as occurs following ischemia. During the early period of reperfusion, both nitric oxide (NO(*)) and superoxide (O-*(2)) generation are increased leading to the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the presence and nature of the interactions of NO(*) or ONOO(-) with XO and the role of this process in regulating oxidant generation. Therefore, we determined the dose-dependent effects of NO(*) and ONOO(-) on the O-*(2) generation and enzyme activity of XO, respectively, by EPR spin trapping of O-*(2) using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide and spectrophotometric assay. ONOO(-) markedly inhibited both O-*(2) generation and XO activity in dose-dependent manner, while NO(*) from NO(*) gas in concentrations up to 200 microM had no effect. Furthermore, we observed that NO(*) donors such as NOR-1 also inhibited O-*(2) generation and XO activity; however, these effects were O-*(2)-dependent and blocked by superoxide dismutase or ONOO(-) scavengers. Finally, we found that ONOO(-) totally abolished the Mo(V) EPR spectrum. These changes were irreversible, suggesting oxidative disruption of the critical molybdenum center of the catalytic site. Thus, ONOO(-) formed in biological systems can feedback and down-regulate XO activity and O-*(2) generation, which in turn may serve to limit further ONOO(-) formation.
    Journal of Biological Chemistry 04/2000; 275(13):9369-76. DOI:10.1074/jbc.275.13.9369 · 4.60 Impact Factor