Raul Jimenez

Harvard University, Cambridge, Massachusetts, United States

Are you Raul Jimenez?

Claim your profile

Publications (170)938.52 Total impact

  • Source
    Alan Heavens, Raul Jimenez, Licia Verde
    [Show abstract] [Hide abstract]
    ABSTRACT: Assuming the existence of standard clocks, standard candles and standard rulers, we determine the length of the Baryon Acoustic Oscillation (BAO) feature, and the expansion history of the recent Universe, from low-redshift data only, in a relatively model-independent way. In this process we assume as little as possible, requiring only the cosmological principle, a metric theory of gravity, a smooth expansion history, and the existence of these standard objects; the rest is determined by the data. The data we use are a compilation of recent BAO data, Type \OneA supernov\ae\ and ages of early-type galaxies. Making only these assumptions, we find for the first time that the standard ruler has a largely model-independent length of $101.9 \pm 1.9 h^{-1}$ Mpc. We also find that the standard candle has a brightness consistent with determinations from supernov\ae\ alone, and that the inverse curvature radius of the Universe is weakly constrained and consistent with zero, independently of the gravity model, provided it is metric. The most notable result is that of the standard ruler; we determine it without using the cosmic microwave background (CMB), and with an error which is marginally smaller than the model-dependent CMB determination from Planck data ($99.3 \pm 2.1 \, h^{-1}$Mpc), which assumes it is the sound horizon at radiation drag in a $\Lambda$CDM universe.
    09/2014;
  • Source
    Tsvi Piran, Raul Jimenez
    [Show abstract] [Hide abstract]
    ABSTRACT: As a copious source of gamma-rays, a nearby Galactic Gamma-Ray Burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 Gyr close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500 Myr causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center, this probability drops below 50%. When considering the Universe as a whole, the safest environments for life (similar to the one on Earth) are the lowest density regions in the outskirts of large galaxies and life can exist in only ~ 10% of galaxies. Remarkably, a cosmological constant is essential for such systems to exist. Furthermore, because of both the higher GRB rate and galaxies being smaller, life as it exists on Earth could not take place at $z > 0.5$. Early life forms must have been much more resilient to radiation.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that modifications of Einstein gravity during inflation could leave potentially measurable imprints on cosmological observables in the form of non-Gaussian perturbations. This is due to the fact that these modifications appear in the form of an extra field that could have non-trivial interactions with the inflaton. We show it explicitly for the case $R+\alpha R^2$, where nearly scale-invariant non-Gaussianity at the level of $f_{\rm NL} \approx -(1$ to $30)$ can be obtained, in a quasi-local configuration.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give an analytical form for the weighted correlation function of peaks in a Gaussian random field. In a cosmological context, this approach strictly describes the formation bias and is the main result here. Nevertheless, we show its validity and applicability to the evolved cosmological density field and halo field, using Gaussian random field realisations and dark matter N-body numerical simulations. Using this result from peak theory we compute the bias of peaks (and dark matter halos) and show that it reproduces results from the simulations at the ${\mathcal O}(10\%)$ level. Our analytical formula for the bias predicts a scale-dependent bias with two characteristics: a broad band shape which, however, is most affected by the choice of weighting scheme and evolution bias, and a more robust, narrow feature localised at the BAO scale, an effect that is confirmed in simulations. This scale-dependent bias smooths the BAO feature but, conveniently, does not move it. We provide a simple analytic formula to describe this effect. We envision that our analytic solution will be of use for galaxy surveys that exploit galaxy clustering.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use cosmology-independent measurements of the expansion history in the redshift range 0.1 < z <1.2 and compare them with the Cosmic Microwave Background-derived expansion history predictions. The motivation is to investigate if the tension between the local (cosmology independent) Hubble constant H0 value and the Planck-derived H0 is also present at other redshifts. We conclude that there is no tension between Planck and cosmology independent-measurements of the Hubble parameter H(z) at 0.1 < z < 1.2 for the LCDM model (odds of tension are only 1:15, statistically not significant). Considering extensions of the LCDM model does not improve these odds (actually makes them worse), thus favouring the simpler model over its extensions. On the other hand the H(z) data are also not in tension with the local H0 measurements but the combination of all three data-sets shows a highly significant tension (odds ~ 1:400). Thus the new data deepen the mystery of the mismatch between Planck and local H0 measurements, and cannot univocally determine wether it is an effect localised at a particular redshift. Having said this, we find that assuming the NGC4258 maser distance as the correct anchor for H0, brings the odds to comfortable values. Further, using only the expansion history measurements we constrain, within the LCDM model, H0 = 68.5 +- 3.5 and Omega_m = 0.32 +- 0.05 without relying on any CMB prior. We also address the question of how smooth the expansion history of the universe is given the cosmology independent data and conclude that there is no evidence for deviations from smoothness on the expansion history, neither variations with time in the value of the equation of state of dark energy.
    Physics of the Dark Universe. 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have performed hydrodynamical simulations from cosmological initial conditions using the Adaptive Mesh Refinement (AMR) code RAMSES to study atomic cooling haloes (ACHs) at z = 10 with masses in the range 5 × 107 M⊙ ≲ M ≲ 2 × 109 M⊙. We assume the gas has primordial composition and H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter (DM) properties of 19 haloes at a spatial resolution of ˜10 (proper) pc, selected from simulations with a total volume of ˜2000 (comoving) Mpc3. This is the largest statistical hydro-simulation study of ACHs at z > 10 to date. We examine the morphology, angular momentum, thermodynamical state and turbulent properties of these haloes, in order to assess the prevalence of discs and massive overdensities that may lead to the formation of supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the angular momentum of the gas and its parent DM halo. Only three of the haloes form rotationally supported cores. Two of the most massive haloes, however, form massive, compact overdense blobs, which migrate to the outer region of the halo. These blobs have an accretion rate between ˜10-1 and 10-3 M⊙ yr-1 (at a distance of 100 pc from their centre), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes that form overdense blobs are located at knots of the cosmic web, cooled their gas early on (z > 17) and experienced many mergers. The gas in these haloes is thus lumpy and highly turbulent, with Mach numbers M≳ 5. In contrast, the haloes forming rotationally supported cores are relatively more isolated, located mid-way along filaments of the cosmic web, cooled their gas more recently and underwent fewer mergers. As a result, the gas in these haloes is less lumpy and less turbulent (Mach numbers M≲ 4), and could retain most of its angular momentum. The remaining 14 haloes have a diverse range of intermediate properties. If verified in a larger sample of haloes and with additional physics to account for metals and star formation, our results will have implications for observations of the highest redshift galaxies and quasars with James Web Space Telescope.
    Monthly Notices of the Royal Astronomical Society 12/2013; 436(3):2301-2325. · 5.52 Impact Factor
  • Raul Jimenez, Tsvi Piran
    [Show abstract] [Hide abstract]
    ABSTRACT: While there are numerous indications that gamma-ray bursts (GRBs) arise from the deaths of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of the Sloan Digital Sky Survey (SDSS) Data Release 7 spectra, we explore a multi-parameter space in galaxy properties such as stellar mass, metallicity, and dust to find the subset of galaxies that reproduces the GRB rate recently obtained by Wanderman & Piran. We find that only galaxies with present stellar masses below <1010M ☉ and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB host galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than are supernovae. Finally, we explain these results using new theoretical advances in the field of star formation.
    The Astrophysical Journal 08/2013; 773(2):126. · 6.73 Impact Factor
  • Source
    Raul Jimenez
    [Show abstract] [Hide abstract]
    ABSTRACT: There has been significant recent progress in observational cosmology. This, in turn, has provided an unprecedented picture of the early universe and its evolution. In this review I will present a (biased) view of how one can use these observational results to constraint fundamental physics and in particular physics beyond the standard model.
    07/2013;
  • Source
    Joaquin Prieto, Raul Jimenez, Licia Verde
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown by Shchekinov & Vasiliev2006 (SV06) that HD molecules can be an important cooling agent in high redshift z >10 haloes if they undergo mergers under specific conditions so suitable shocks are created. Here we build upon Prieto et al. (2012) who studied in detail the merger-generated shocks, and show that the conditions for HD cooling can be studied by combining these results with a suite of dark-matter only simulations. We have performed a number of dark matter only simulations from cosmological initial conditions inside boxes with sizes from 1 to 4 Mpc. We look for haloes with at least two progenitors of which at least one has mass M > M_cr (z), where M_cr (z) is the SV06 critical mass for HD over-cooling. We find that the fraction of over-cooled haloes with mass between M_cr (z) and 10^{0.2} M_cr (z), roughly below the atomic cooling limit, can be as high as ~ 0.6 at z ~ 10 depending on the merger mass ratio. This fraction decreases at higher redshift reaching a value ~0.2 at z ~ 15. For higher masses, i.e. above 10^{0.2} M_cr (z) up to 10^{0.6} M_cr (z), above the atomic cooling limit, this fraction rises to values ~ 0.8 until z ~ 12.5. As a consequence, a non negligible fraction of high redshift z > 10 mini-haloes can drop their gas temperature to the Cosmic Microwave Background temperature limit allowing the formation of low mass stars in primordial environments.
    Monthly Notices of the Royal Astronomical Society 07/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show how general initial conditions for small field inflation can be obtained in multi-field models. This is provided by non-linear angular friction terms in the inflaton that provide a phase of non-slow-roll inflation before the slow-roll inflation phase. This in turn provides a natural mechanism to star small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We also show that there is a relation between the scale of SUSY breaking sqrt (f) and the amount of non-gaussian fluctuations generated by the inflaton. In particular, we show that in the local non-gaussian shape there exists the relation sqrt (f) = 10^{13} GeV sqrt (f_NL). With current observational limits from Planck, and adopting the minimum amount of non-gaussian fluctuations allowed by single-field inflation, this provides a very tight constraint for the SUSY breaking energy scale sqrt (f) = 3-7 x 10^{13} GeV at 95% confidence. Further limits, or detection, from next year's Planck polarisation data will further tighten this constraint by a factor of two. We highlight that the key to our approach is to identify the inflaton with the scalar component of the goldstino superfield. This superfield is universal and implements the dynamics of SUSY breaking as well as superconformal breaking.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffrey's scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in "strong" tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension "highly significant" (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
    06/2013;
  • Source
    Licia Verde, Raul Jimenez
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore how local, cosmology-independent measurements of the Hubble constant and the age of the Universe help to provide a powerful consistency check of the currently favored cosmological model (flat ΛCDM) and model-independent constraints on cosmology. We use cosmic microwave background (CMB) data to define the model-dependent cosmological parameters, and add local measurements to assess consistency and determine whether extensions to the model are justified. At current precision, there is no significant tension between the locally measured Hubble constant and age of the Universe (with errors of 3% and 5%, respectively) and the corresponding parameters derived from the CMB. However, if errors on the local measurements could be decreased by a factor of two, one could decisively conclude if there is tension or not. We also compare the local and CMB data assuming simple extensions of the flat, ΛCDM model (including curvature, dark energy with a constant equation of state parameter not equal to −1, non-zero neutrino masses and a non-standard number of neutrino families) and find no need for these extra parameters; in particular, we constrain the effective number of neutrino species to be less than 4 at 95% confidence. We show that local measurements provide constraints on the curvature and the equation of state of dark energy nearly orthogonal to those of the CMB. We argue that cosmology-independent measurements of local quantities at the percent level would be very useful to explore cosmology in a model-independent way.
    Physics of the Dark Universe. 06/2013; 2(2):65–71.
  • Raul Jimenez, Tsvi Piran
    [Show abstract] [Hide abstract]
    ABSTRACT: While there are numerous indications that GRBs arise from the death of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of SDSS Data Release 7 spectra, we explore a multi-parameter space in galaxy properties, like stellar mass, metallicity, dust etc. to find the sub-set of galaxies that reproduce the recently obtained GRB rate by Wanderman & Piran (2010). We find that only galaxies with present stellar masses below < 10^{10} Msun and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to the dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB hosts galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than SNe. Finally we explain these results using new theoretical advances in the field of star formation.
    03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non- Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to 7{\sigma} for fNL values (both true and sampled) not ruled out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.
    Journal of Cosmology and Astroparticle Physics 01/2013; 2013(06). · 6.04 Impact Factor
  • Source
    Joaquin Prieto, Raul Jimenez, Zoltan Haiman
    [Show abstract] [Hide abstract]
    ABSTRACT: We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun<~M<~2E9Msun. We assume primordial gas and H2-cooling and prior star-formation have been suppressed. We analysed 19 haloes (gas and DM) at a resolution of ~10 (proper) pc, selected from a total volume of ~2E3 (comoving) Mpc3. This is the largest statistical hydro-sim. study of ACHs at z>10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N. >~ 5. In contrast, the haloes forming rotationally supported cores are relatively more isolated, located midway along filaments, cooled more recently, and underwent fewer mergers. Thus, the gas in these haloes is less lumpy and less turbulent (Mach <~ 4), and could retain most of its AM. The remaining 14 haloes have intermediate properties. If verified in a larger sample of haloes and with additional physics, our results will have implications for observations of the highest-redshift galaxies and quasars with JWST.
    01/2013;
  • Source
    Dataset: 0804.3091v1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume 0.04Gpc3. Using the SFH in a time period which samples the history of the Universe between look-back times 11.5 to 13.4 Gyrs as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.
    The Astrophysical Journal Letters 09/2012; 762(1). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the accuracy of Eulerian perturbation theory for describing the matter and galaxy power spectra in real and redshift space in light of future observational probes for precision cosmology. Comparing the analytical results with a large suite of N-body simulations (160 independent boxes of 13.8 (Gpc/h)^3 volume each, which are publicly available), we find that re-summing terms in the standard perturbative approach predicts the real-space matter power spectrum with an accuracy of < 2% for k < 0.20 h/Mpc at redshifts z < 1.5. This is obtained following the widespread technique of writing the resummed propagator in terms of 1-loop contributions. We show that the accuracy of this scheme increases by considering higher-order terms in the resummed propagator. By combining resummed perturbation theories with several models for the mappings from real to redshift space discussed in the literature, the multipoles of the dark-matter power spectrum can be described with sub-percent deviations from N-body results for k < 0.15h/Mpc at z < 1. As a consequence, the logarithmic growth rate, f, can be recovered with sub-percent accuracy on these scales. Extending the models to massive dark-matter haloes in redshift space, our results describe the monopole term from N-body data within 2% accuracy for scales k < 0.15 h/Mpc at z < 0.5; here f can be recovered within < 5% when the halo bias is known. We conclude that these techniques are suitable to extract cosmological information from future galaxy surveys.
    Journal of Cosmology and Astroparticle Physics 09/2012; 2012(11). · 6.04 Impact Factor
  • Source
    Roland de Putter, Licia Verde, Raul Jimenez
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new observational constraints on inhomogeneous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for the homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
    Journal of Cosmology and Astroparticle Physics 08/2012; 2013(02). · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identify a novel physical mechanism that may be responsible for energy release in $\gamma$-ray bursts. Radial perturbations in the neutron core, induced by its collision with collapsing outer layers during the early stages of supernova explosions, can trigger a gravitational shock, which can readily eject a small but significant fraction of the collapsing material at ultra-relativistic speeds. The development of such shocks is a strong-field effect arising in near-critical collapse in General Relativity and has been observed in numerical simulations in various contexts, including in particular radially perturbed neutron star collapse, albeit for a tiny range of initial conditions. Therefore, this effect can be easily missed in numerical simulations if the relevant parameter space is not exhaustively investigated. In the proposed picture, the observed rarity of $\gamma$-ray bursts would be explained if the relevant conditions for this mechanism appear in only about one in every $10^4-10^5$ core collapse supernovae. We also mention the possibility that near-critical collapse could play a role in powering the central engines of Active Galactic Nuclei.
    International Journal of Modern Physics A 04/2012; 27(20). · 1.13 Impact Factor

Publication Stats

4k Citations
938.52 Total Impact Points

Institutions

  • 2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2009–2014
    • University of Barcelona
      • Instituto de Ciencias del Cosmos (ICCUB)
      Barcino, Catalonia, Spain
    • IEEC Institute of Space Studies of Catalonia
      Barcino, Catalonia, Spain
  • 2009–2013
    • CERN
      Genève, Geneva, Switzerland
  • 2009–2012
    • Catalan Institution for Research and Advanced Studies
      Barcino, Catalonia, Spain
  • 2010
    • Yale University
      • Department of Physics
      New Haven, CT, United States
  • 1996–2009
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom
  • 2008
    • National Institute of Standards and Technology
      Maryland, United States
    • Columbia University
      New York City, New York, United States
  • 2006–2008
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
  • 2003–2008
    • University of Pennsylvania
      • Department of Physics and Astronomy
      Philadelphia, PA, United States
  • 2000–2008
    • Rutgers, The State University of New Jersey
      • Department Physics and Astronomy
      New Brunswick, NJ, United States
  • 1998–2002
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, SCT, United Kingdom