Publications (237)680.04 Total impact
 [Show abstract] [Hide abstract]
ABSTRACT: The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for groundbased GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, corecollapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.General Relativity and Gravitation 09/2015; 47(2). DOI:10.1007/s107140141796x · 1.77 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We report the experimental observation of twomode squeezing in the oscillation quadratures of a thermal microoscillator. This effect is obtained by parametric modulation of the optical spring in a cavity optomechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum optomechanical modes.  [Show abstract] [Hide abstract]
ABSTRACT: The study of the optomechanical coupling between the radiation pressure of a laser beam and a mechanical oscillator is an emerging field in quantum optics that is taking advantage of all the recent developments in microfabrication. The manipulation of the quantum state of light is within the reach of systems based on a FabryPerot cavity with a MicroOptoMechanicalSystem (MOMS) resonators used as endmirror. To approach the quantum regime, these micro devices must satisfy two basic requirements: low optical and mechanical losses. We have recently proposed a class of very low loss MOMS devices working in the 100 kHz frequency region, based on twoside MEMS processing bulkmicromachining. In this work we describe our latest process development, based on the used of pure aluminum as a masking layer for the optical coating during fabrication, that significantly improves the quality of the devices and the yield of the process, opening the way for their use in integrated systems for quantum optics. The devices show very high optical quality (finesse up to 105 can be achieved in optical cavity) and a mechanical quality factor over 106 at cryogenic temperatures.Microelectronic Engineering 09/2015; 145:138142. DOI:10.1016/j.mee.2015.03.036 · 1.20 Impact Factor 
Dataset: PhysRevA.86.051801 2012 ESerra
 [Show abstract] [Hide abstract]
ABSTRACT: We present an oscillating micromirror with mechanical quality factors Q up to 1.2×10^6 at cryogenic temperature and optical losses lower than 20 ppm. The device is specifically designed to ease the detection of ponderomotive squeezing (or, more generally, to produce a cavity quantum optomechanical system) at frequencies of about 100 kHz. The design allows one to keep under control both the structural loss in the optical coating and the mechanical energy leakage through the support. The comparison between devices with different shapes shows that the residual mechanical loss at 4.2 K is equally contributed by the intrinsic loss of the silicon substrate and of the coating, while at higher temperatures the dominant loss mechanism is thermoelasticity in the substrate. As the modal response of the device is tailored for its use in optical cavities, these features make the device very promising for quantumoptics experiments.05/2015; 5(3):054009. DOI:10.1103/PhysRevApplied.3.054009 
Article: The Advanced Virgo detector
[Show abstract] [Hide abstract]
ABSTRACT: The Advanced Virgo interferometer is the upgraded version of the Virgo detector having the goal to extend by a factor 10 the observation horizon in the universe and consequently increase the detection rate by three orders of magnitude. Its installation is in progress and is expected to be completed in late 2015. In this proceeding we will present the scheme and the main challenging technical features of the detector and we will give an outline of the installation status and the foreseen time schedule which will bring Advanced Virgo to its full operation.Journal of Physics Conference Series 05/2015; 610(1):012014. DOI:10.1088/17426596/610/1/012014  [Show abstract] [Hide abstract]
ABSTRACT: We address the problem of noise regression in the output of gravitationalwave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the gravitationalwave channel from the PEM measurements. One of the most promising regression method is based on the construction of WienerKolmogorov filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WienerKolmogorov method has been extended, incorporating banks of Wiener filters in the timefrequency domain, multichannel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we presents the first results on regression of the bicoherent noise in the LIGO data.Classical and Quantum Gravity 03/2015; 32(16). DOI:10.1088/02649381/32/16/165014 · 3.17 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We address the problem of the stability of a cavity optomechanical system based on an oscillator having at the same time low optical and mechanical losses. As we are interested in extending the use of optical squeezing as a tool for improving quantum limited displacement sensing at low frequency, we have developed a family of optomechanical devices designed to work at frequencies of about 100 kHz. The devices actually meet the initial design goals, but new requirements have emerged from the analysis of their behavior in optical cavities, due to the interaction between the cavity locking system and the low order normal modes of the devices.Annalen der Physik 01/2015; 527(12). DOI:10.1002/andp.201400093 · 3.05 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with nonpulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.325.3 days using the matchedfiltering Fstatistic. We found no credible gravitationalwave signals. We set 95% confidence upper limits as strong (low) as $4\times10^{25}$ on intrinsic strain, $2\times10^{7}$ on fiducial ellipticity, and $4\times10^{5}$ on rmode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutronstar ellipticities and rmode amplitudes.  [Show abstract] [Hide abstract]
ABSTRACT: We present results of a search for continuouslyemitted gravitational radiation, directed at the brightest lowmass Xray binary, Scorpius X1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50550 Hz, and performs an incoherent sum of coherent $\mathcal{F}$statistic power distributed amongst frequencymodulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitationalwave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X1; and an anglerestricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e24 and 8e25 are reported at 150 Hz for the standard and anglerestricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the anglerestricted search at the sensitive region of the detector.Physical Review D 12/2014; 91(6). DOI:10.1103/PhysRevD.91.062008 · 4.64 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated to a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters are roughly extrapolated from indirect measurements. As recently proposed, lowenergy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high quality factor micro and nanooscillators, spanning a wide range of masses around the Planck mass $m_{\mathrm{P}}$ (${\approx 22\,\mu\mathrm{g}}$), and compare it with a model of deformed dynamics. Previous limits to the parameters quantifying the commutator deformation are substantially lowered.Nature Communications 11/2014; 6. DOI:10.1038/ncomms8503 · 11.47 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitationalwave observatories and the partially completed IceCube highenergy neutrino detector, including periods of joint operation between 20072010. These include parts of the 20052007 run and the 20092010 run for LIGOVirgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitationalwave emission energy of $10^{2}$ M$_\odot$c$^2$ at $\sim 150$ Hz with $\sim 60$ ms duration, and highenergy neutrino emission of $10^{51}$ erg comparable to the isotropic gammaray energy of gammaray bursts, we limit the source rate below $1.6 \times 10^{2}$ Mpc$^{3}$yr$^{1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitationalwave detector era.Physical Review D 11/2014; 90:102002. DOI:10.1103/PhysRevD.90.102002 · 4.64 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: In this paper we present the results of a coherent narrowband search for continuous gravitationalwave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95$\%$ confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from Xray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spindown limit, computed assuming that all the observed spindown is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spindown limit, and represent a significant improvement with respect to past analysis. This is the first time the spindown limit is significantly overcome in a narrowband search.Physical Review D 10/2014; 91(2). DOI:10.1103/PhysRevD.91.022004 · 4.64 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: In 20092010, the Laser Interferometer Gravitationalwave Observa tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitationalwave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.Classical and Quantum Gravity 10/2014; 32(11). DOI:10.1088/02649381/32/11/115012 · 3.17 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: Searches for a stochastic gravitationalwave background (SGWB) using terrestrial detectors typically involve crosscorrelating data from pairs of detectors. The sensitivity of such crosscorrelation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitationalwave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40  460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitationalwave signal. However, at high frequencies, 4601000 Hz, these techniques are sufficient to set a $95\%$ confidence level (C.L.) upper limit on the gravitationalwave energy density of \Omega(f)<7.7 x 10^{4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.Physical Review D 10/2014; 91(2). DOI:10.1103/PhysRevD.91.022003 · 4.64 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We summarise the parallel session C7 MultiMessenger Astronomy of GW Sources in the GR20 Amaldi 10 Conference. The talks in this session covered a wide range of topics in multimessenger astronomy.General Relativity and Gravitation 09/2014; 46(9). DOI:10.1007/s1071401417716 · 1.77 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We have recently shown that the very low mechanical energy achieved and measured in the main vibration mode of gravitational wave bar detectors can set an upper limit to possible modifications of the Heisenberg uncertainty principle that are expected as an effect of gravity. Here we give more details on the data analysis procedure that allows one to deduce the energy of the bar mode (i.e., the meaningful parameter for our purpose). Furthermore, we extend the analysis of our results, discussing their implication for physical models that face quantum gravity from different points of view, e.g., proposing modified commutation relations or exploring spacetime discreteness.New Journal of Physics 08/2014; 16(8):085012. DOI:10.1088/13672630/16/8/085012 · 3.56 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network with the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detections of gravitational waves and to opening a new observation window on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.Classical and Quantum Gravity 08/2014; 32(2). DOI:10.1088/02649381/32/2/024001 · 3.17 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: The Amaldi 10 Parallel Session C3 on Advanced Gravitational Wave detectors gave an overview of the status and several specific challenges and solutions relevant to the instruments planned for a middecade start of observation. Invited overview talks for the Virgo, LIGO, and KAGRA instruments were complemented by more detailed discussions in presentations and posters of some instrument features and designs.General Relativity and Gravitation 07/2014; 46(8). DOI:10.1007/s1071401417494 · 1.77 Impact Factor 
Article: Search for Gravitational Waves Associated with γ ray Bursts Detected by the Interplanetary Network
[Show abstract] [Hide abstract]
ABSTRACT: We present the results of a search for gravitational waves associated with 223 gammaray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 20052010 during LIGO's fifth and sixth science runs and Virgo's first, second and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a wellmodeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitationalwave search sensitivity as compared to corresponding alltime, allsky searches. We find no evidence of a gravitationalwave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitationalwave signals associated with the GRBs. For all IPNdetected GRBs, for which a sufficient duration of quality gravitationalwave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitationalwave emission energy of $10^{2}M_{\odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 shorthard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in firstgeneration LIGO and Virgo gravitationalwave detectors, and a resulting examination of prospects for the advanced gravitationalwave detectors.Physical Review Letters 06/2014; 113(1):011102. DOI:10.1103/PhysRevLett.113.011102 · 7.51 Impact Factor
Publication Stats
2k  Citations  
680.04  Total Impact Points  
Top Journals
Institutions

1989–2015

INFN  Istituto Nazionale di Fisica Nucleare
Frascati, Latium, Italy


1987–2015

Università degli Studi di Trento
 Department of Physics
Trient, TrentinoAlto Adige, Italy


2012

Trent University
Питерборо, Ontario, Canada


2010

University of NiceSophia Antipolis
Nice, ProvenceAlpesCôte d'Azur, France 
University of Naples Federico II
Napoli, Campania, Italy


2000

Sapienza University of Rome
 Department of Physics
Roma, Latium, Italy 
Nottingham Trent University
Nottigham, England, United Kingdom


1994–2000

University of Ferrara
Ferrare, EmiliaRomagna, Italy
