Michael Bottlang

Oregon Health and Science University, Portland, OR, United States

Are you Michael Bottlang?

Claim your profile

Publications (72)135.66 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Document fixation and healing of distal femur fractures stabilized by plate osteosynthesis using Far Cortical Locking (FCL) screws. Prospective, observational. Two level I and one level II trauma centers. Thirty-two consecutive patients with 33 distal femur fractures (AO/OTA types 33-A,C). Fractures were stabilized by plate osteosynthesis with MotionLoc FCL screws without supplemental bone graft or bone morphogenic proteins. Patients were followed up for a minimum of one year with functional and radiographic assessments obtained at postoperative weeks 6, 12, and 24 and computed tomography scans at week 12. If union was not confirmed within one year, follow-up was continued until union or revision surgery. The primary endpoint was fracture union in absence of complications and secondary interventions. Fracture healing was defined by resolution of pain at the fracture site and cortical bridging on biplanar radiographs. Complications were defined by fixation failure, loss of reduction, implant breakage, infection, non-union, and need for revision. Thirty-one fractures were available for follow-up. None of the 125 FCL screws used for diaphyseal fixation broke or lost fixation. One of 31 fractures displaced into varus (ΔVarus=5.8°). Thirty of 31 fractures healed within 15.6±6.2 weeks. At an average follow-up of 17±4 months there were two revisions, one to correct a mal-rotation at day 5, and one to treat a non-union at 6 months. Absence of implant and fixation failure suggests that dynamic plating of distal femur fractures with FCL screws provides safe and effective fixation. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
    Journal of orthopaedic trauma 11/2013; · 1.78 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p<0.001), a 34% reduction in peak angular acceleration (p<0.001), and a 22-32% reduction in neck loading (p<0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required.
    Accident; analysis and prevention 05/2013; 59C:109-117. · 1.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Periprosthetic distal femur fractures are severe injuries occurring in the often osteoporotic bone of the elderly. Far cortical locking (FCL) screws, which have been shown to promote increased callus formation in animal models, have recently become available for clinical use. The purpose of this study is to report preliminary healing and complication rates of periprosthetic distal femur fractures treated with FCL constructs. A retrospective review of 20 patients who underwent open reduction and internal fixation of periprosthetic distal femur fractures using FCL constructs was performed. Healing was assessed radiographically and clinically at 6, 12 and 24 weeks post-operatively. Construct failure was defined as any hardware breakage or bone-implant dissociation leading to loss of reduction. Complete data through the 24 week study period was available for 18/20 patients. Bridging callus was identified in 16/18 patients by the 24 week follow up for a healing rate of 88.9%. In patients that healed, the average time to medial bridging callus formation was 10.7±6.7 weeks, 11.0±6.6 weeks for anterior fracture line and 13.4±7.5 weeks for the posterior fracture line. both patients that failed to heal underwent revision surgery. The initial results of this study are comparable to results reported for distal femur periprosthetic fractures treated with locking plate fixation without FCL screws, although it was difficult to compare time to healing between previously published studies. It is the impression of the authors that callus appears earlier and is more robust and uniform between the three cortices in FCL cases compared to their previous experiences with traditional locking plate periprosthetic distal femur fractures. This work suggests that FCL screws may be superior to traditional locking constructs but further studies are needed to directly compare the two methods.
    The Iowa orthopaedic journal 01/2013; 33:7-11.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To develop a reliable, easy to use bedside, office, or field system that allows the rapid measurement of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP) using a bone-conduction stimulus. Prospective bioengineering design and proof of concept of the test system with saccular and utricular otolith response studies in human subjects. Private practice, tertiary neurotology referral center. Twenty healthy adult controls without history of auditory or vestibular dysfunction and 5 preoperative and postoperative patients with confirmed superior canal dehiscence (SCD) participated. The subjects underwent auditory stimuli-based cVEMP and oVEMP studies using a commercially available system as well as testing with a novel bone-conduction cVEMP and oVEMP head striker system. Duration of each study, healthy subject and patient comfort, reproducibility, latency, and amplitude of auditory and striker evoked cVEMP and oVEMP responses. The mean age of the healthy controls was 43.8, with a range of 19 to 69 years (10 male and 10 female subjects). The mean age of the SCD patient group was 46, with a range of 25 to 54 years; all female subjects. Although the cVEMP responses were similar using either the auditory or head strike stimuli, the healthy subjects preferred the latter, but the SCD patients became more symptomatic. The oVEMP data showed more consistent responses using the striker system. A statistically significant reduction in latency for the striker-evoked cVEMP occurred compared with the auditory cVEMP evoked response in the 5 SCD preoperative patients. All normalized postoperatively. Recording the cVEMP and oVEMP responses using the striker system was much more rapid than with auditory stimuli and was more comfortable for the healthy subjects. The striker system and the acoustic method elicited strong otolithic receptor dysfunction symptoms in all SCD patients; however, they preferred the shorter striker studies. The striker system, because of the statistically shorter latency of p13 during the striker evoked cVEMP, which normalized after SCD closure, suggests that this method may be useful in identifying SCD patients before imaging studies. In addition, based on our biomechanical data, the striker was able to reliably produce a consistent and defined head striker impact.
    Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 08/2012; 33(8):1392-400. · 1.44 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Surgical stabilization of flail chest injury with generic osteosynthesis implants remains challenging. A novel implant system comprising anatomic rib plates and intramedullary splints may improve surgical stabilization of flail chest injuries. This observational study evaluated our early clinical experience with this novel implant system to document if it can simplify the surgical procedure while providing reliable stabilization. METHODS: Twenty consecutive patients that underwent stabilization of flail chest injury with anatomic plates and intramedullary splints were prospectively enrolled at two Level I trauma centres. Data collection included patient demographics, injury characterization, surgical procedure details and post-operative recovery. Follow-up was performed at three and six months to assess pulmonary function, durability of implants and fixation and patient health. RESULTS: Patients had an Injury Severity Score of 28±10, a chest Abbreviated Injury Score of 4.2±0.4 and 8.5±2.9 fractured ribs. Surgical stabilization was achieved on average with five plates and one splint. Intra-operative contouring was required in 14% of plates. Post-operative duration of ventilation was 6.4±8.6 days. Total hospitalization was 15±10 days. At three months, patients had regained 84% of their expected forced vital capacity (%FVC). At six months, 7 of 15 patients that completed follow-up had returned to work. There was no mortality. Among the 91 rib plates, 15 splints and 605 screws in this study there was no hardware failure and no loss of initial fixation. There was one incidence of wound infection. Implants were removed in one patient after fractures had healed. CONCLUSIONS: Anatomic plates eliminated the need for extensive intraoperative plate contouring. Intramedullary rib splints provided a less-invasive fixation alternative for single, non-comminuted fractures. These early clinical results indicate that the novel implant system provides reliable fixation and accommodates the wide range of fractures encountered in flail chest injury.
    Injury 08/2012; · 1.93 Impact Factor
  • Michael Bottlang
    Journal of orthopaedic trauma 06/2011; 25(6):e60. · 1.78 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To characterize scleral biomechanics in both eyes of eight monkeys in which chronic intraocular pressure (IOP) elevation was induced in one eye. Each posterior sclera was mounted on a pressurization apparatus, IOP was elevated from 5 to 45 mm Hg while the 3D displacements of the scleral surface were measured by speckle interferometry. Finite element (FE) models of each scleral shell were constructed that incorporated stretch-induced stiffening and multidirectionality of the collagen fibers. FE model predictions were then iteratively matched to experimental displacements to extract unique sets of scleral biomechanical properties. For all eyes, the posterior sclera exhibited inhomogeneous, anisotropic, nonlinear biomechanical behavior. Biomechanical changes caused by chronic IOP elevation were complex and specific to each subject. Specifically: (1) Glaucomatous eyes in which the contralateral normal eyes displayed large modulus or thickness were less prone to biomechanical changes; (2) glaucomatous scleral modulus associated with an IOP of 10 mm Hg decreased (when compared with that of the contralateral normal) after minimal chronic IOP elevation; (3) glaucomatous scleral modulus associated with IOPs of 30 and 45 mm Hg increased (when compared with that of the contralateral normal) after moderate IOP elevation; and (4) FE-based estimates of collagen fiber orientation demonstrated no change in the glaucomatous eyes. Significant stiffening of the sclera follows exposure to moderate IOP elevations in most eyes. Scleral hypercompliance may precede stiffening or be a unique response to minimal chronic IOP elevation in some eyes. These biomechanical changes are likely to be the result of scleral extracellular matrix remodeling.
    Investigative ophthalmology & visual science 04/2011; 52(8):5656-69. · 3.43 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Several mechanical studies suggest locking plate constructs may inhibit callus necessary for healing of distal femur fractures. However, the rate of nonunion and factors associated with nonunion are not well established. We (1) determined the healing rate of distal femur fractures treated with locking plates, (2) assessed the effect of patient injury and treatment variables on fracture healing, and (3) compared callus formation in fractures that healed with those that did not heal. We retrospectively reviewed 82 patients treated with 86 distal femur fractures using lateral locking plates. We reviewed all charts and radiographs to determine patient and treatment variables and then determined the effects of these variables on healing. We quantitatively measured callus at 6, 12, and 24 weeks. The minimum time for telephone interviews and SF-36v2(TM) scores was 1 year (mean, 4.2 years; range, 1-7.2 years). Fourteen fractures (20%) failed to unite. Demographics and comorbidities were similar in patients who achieved healing compared with those who had nonunions. There were more empty holes in the plate adjacent to fractures that healed; comminuted fractures failed to heal more frequently than less comminuted fractures. Less callus formed in fractures with nonunions and in patients treated with stainless steel plates compared with titanium plates. Complications occurred in 28 of 70 fractures (40%), 19 of which had additional surgery. We found a high rate of nonunion in distal femur fractures treated with locking plates. Nonunion presented late without hardware failure and with limited callus formation suggesting callus inhibition rather than hardware failure is the primary problem. Mechanical factors may play a role in the high rate of nonunion.
    Clinical Orthopaedics and Related Research 03/2011; 469(6):1757-65. · 2.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The high stiffness of periarticular locked plating constructs can suppress callus formation and fracture healing. Replacing standard locking screws with far cortical locking (FCL) screws can decrease construct stiffness and can improve fracture healing in diaphyseal plating constructs. However, FCL function has not been tested in conjunction with periarticular plating constructs in which FCL screws are confined to the diaphyseal segment. This biomechanical study evaluated if diaphyseal fixation of a periarticular locking plate with FCL screws reduces construct stiffness and induces parallel interfragmentary motion without decreasing construct strength. Periarticular locking plates were applied to stabilize distal femur fractures in 22 paired femurs using either a standard locked plating approach (LP group) or FCL for diaphyseal fixation (FCL group) using MotionLoc screws (Zimmer, Warsaw, IN). Each specimen was evaluated under quasiphysiological loading to assess construct stiffness, construct durability under dynamic loading, and residual strength after dynamic loading. FCL constructs had an 81% lower initial stiffness than LP constructs. They induced nearly five times more interfragmentary motion than LP constructs under one body weight loading (P < 0.001). FCL constructs generated parallel interfragmentary motion, whereas LP constructs exhibited 48% less motion at the near cortex than at the far cortex (P = 0.002). Seven LP constructs and eight FCL constructs survived 100,000 loading cycles. The residual strength of surviving constructs was 4.9 ± 1.6 kN (LP group) and 5.3 ± 1.1 kN (FCL group, P = 0.73). In summary, FCL screws reduce stiffness, generate parallel interfragmentary motion, and retain the strength of a periarticular locked plating construct. Therefore, FCL fixation may be advisable for stiffness reduction of periarticular plating constructs to promote fracture healing by callus formation.
    Journal of orthopaedic trauma 02/2011; 25 Suppl 1:S29-34. · 1.78 Impact Factor
  • Source
    Michael Bottlang, Florian Feist
    [show abstract] [hide abstract]
    ABSTRACT: The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.
    Journal of orthopaedic trauma 02/2011; 25 Suppl 1:S21-8. · 1.78 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Elevation of a locking plate over the bone surface not only supports biological fixation, but also decreases the torsional strength of the fixation construct. Biplanar fixation by means of a staggered screw hole arrangement may combat this decreased torsional strength caused by plate elevation. This biomechanical study evaluated the effect of biplanar fixation on the torsional strength of locking plate fixation in the femoral diaphysis. Custom titanium plates were manufactured with either a linear or staggered hole pattern to evaluate planar and biplanar fixation, respectively. Fixation strength under torsional loading was evaluated in surrogates of the femoral diaphysis representative of osteoporotic and non-osteoporotic bone. Furthermore, fixation strength was determined for plate fixation with unicortical or bicortical locking screws. Five specimens per configuration were loaded to failure in torsion to determine their strength, stiffness, and failure mode. In osteoporotic bone, biplanar fixation was 32% stronger (P=0.01) than planar fixation when unicortical screws were used and 9% stronger (P=0.02) when bicortical screws were used. In non-osteoporotic bone, biplanar fixation was 55% stronger (P<0.001) than planar fixation when unicortical screws were used and 42% (P<0.001) stronger when bicortical screws were used. A biplanar screw configuration improves the torsional strength of diaphyseal plate fixation relative to a planar configuration in both osteoporotic and normal bone. With biplanar fixation, unicortical screws provide the same fixation strength as bicortical screws in non-osteoporotic bone.
    Clinical biomechanics (Bristol, Avon) 01/2011; 26(5):484-90. · 1.76 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Biological activity can be added to synthetic scaffolds by incorporating functional peptide sequences that provide enzyme-mediated degradation sites, facilitate cellular adhesion or stimulate signaling pathways. Poly(ethylene glycol) diacrylate is a popular synthetic base for tissue engineering scaffolds because it creates a hydrophilic environment that can be chemically manipulated to add this biological functionality. Furthermore, the acrylate groups allow for encapsulation of cells using photopolymerization under physiological conditions. One complication with the addition of these peptides is that aromatic amino acids absorb light at 285 nm and compete with the ultraviolet (UV)-sensitive photoinitiators such as IrgacureTM 2959 (I2959), the most commonly used initiator for cytocompatible photoencapsulation of cells into synthetic scaffolds. In this study we define non-toxic conditions for photoencapsulation of human mesenchymal stem cells (hMSC) in PEGDA scaffolds using a visible light photoinitiator system composed of eosin Y, triethanolamine and 1-vinyl-2-pyrrolidinone. This visible light photoinitiator produced hydrogel scaffolds with an increased viability of encapsulated hMSCs and a more tightly crosslinked network in one-third the time of UV polymerization with I2959.
    European cells & materials 01/2011; 22:43-55; discussion 55. · 4.56 Impact Factor
  • Source
    The Journal of Bone and Joint Surgery 12/2010; 92 Suppl 2:12-22. · 3.23 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Systematic advancements in the field of musculoskeletal tissue engineering require clear communication about the mechanical environments that promote functional tissue growth. To support the rapid discovery of effective mechanostimulation protocols, this study developed and validated a mechanoactive transduction and evaluation bioreactor (MATE). The MATE provides independent and consistent mechanical loading of six specimens with minimal hardware. The six individual chambers accurately applied static and dynamic loads (1 and 10 Hz) in unconfined compression from 0.1 to 10 N. The material properties of poly(ethylene glycol) diacrylate hydrogels and bovine cartilage were measured by the bioreactor, and these values were within 10% of the values obtained from a standard single-chamber material testing system. The bioreactor was able to detect a 1-day 12% reduction (2 kPa) in equilibrium modulus after collagenase was added to six collagenase sensitive poly(ethylene glycol) diacrylate hydrogels (p = 0.03). By integrating dynamic stimulation and mechanical evaluation into a single batch-testing research platform, the MATE can efficiently map the biomechanical development of tissue-engineered constructs during long-term culture.
    Tissue Engineering Part C Methods 10/2010; 17(3):367-74. · 4.64 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Biomechanical research directed at developing customized implant solutions for rib fracture fixation is essential to reduce the complexity and to increase the reliability of rib osteosynthesis. Without a simple and reliable implant solution, surgical stabilization of rib fractures will remain underutilized despite proven benefits for select indications. This article summarizes the research, development, and testing of a specialized and comprehensive implant solution for rib fracture fixation. METHODS: An implant system for rib fracture fixation was developed in three phases: first, research on rib biomechanics was conducted to better define the form and function of ribs. Second, research results were implemented to derive an implant system comprising anatomical plates and intramedullary rib splints. Third, the functionality of anatomic plates and rib splints was evaluated in a series of biomechanical tests. RESULTS: Geometric analysis of the rib surface yielded a set of anatomical rib plates that traced the rib surface over a distance of 13-15 cm without the need for plate contouring. Structurally, the flexible design of anatomic plates did not increase the native stiffness of ribs while restoring 77% of the native rib strength. Intramedullary rib splints with a rectangular cross-section provided 48% stronger fracture fixation than traditional intramedullary fixation with Kirschner wires. CONCLUSION: The anatomic plate set can simplify rib fracture fixation by minimizing the need for plate contouring. Intramedullary fixation with rib splints provides a less-invasive fixation alternative for posterior rib fracture, where access for plating is limited. The combination of anatomic plates and intramedullary splints provides a comprehensive system to manage the wide range of fractures encountered in flail chest injuries.
    European Journal of Trauma and Emergency Surgery 10/2010; 36(5):417-426. · 0.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Flail chest injuries cause significant morbidity, especially in multiply injured patients. Standard treatment is typically focused on the underlying lung injury and involves pain control and positive pressure ventilation. Several studies suggest improved short- and long-term outcomes following operative stabilization of the flail segments. Despite these studies, flail chest fixation remains a largely underutilized procedure. METHODS: This article reviews the relevant literature concerning flail chest fixation and describes the different implants and techniques available for fixation. Additionally, an illustrative case example is provided for description of the surgical approach. RESULTS: Two prospective randomized studies, five comparative studies, and a number of case series documented benefits of operative treatment of flail chest injuries, including a decreased in ventilation duration, ICU stay, rates of pneumonia, mortality, residual chest wall deformity, and total cost of care. Historically, rib fractures have been stabilized with external plates or intramedullary implants. The use of contemporary, anatomically contoured rib plates reduced the need for intraoperative plate bending. Intramedullary rib splints allowed less-invasive fixation of posterior fractures where access for plating was limited. CONCLUSION: Operative treatment can provide substantial benefits to patients with flail chest injuries and respiratory compromise requiring mechanical ventilation. The use of anatomically contoured rib plates and intramedullary splints greatly simplifies the procedure of flail chest fixation.
    European Journal of Trauma and Emergency Surgery 10/2010; 36(5):427-433. · 0.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Hybrid plating (HP) may improve fixation strength of locked plating (LP) constructs by combining the use of locked and nonlocked screws within a bone segment. This biomechanical study evaluated whether a hybrid bridge plating construct provides greater fixation strength than an all-locked construct in the osteoporotic diaphysis. LP and HP constructs were applied to a validated surrogate of the osteoporotic femoral diaphysis in a bridge plating configuration. In LP constructs, plates were applied with three locking screws on each side of the fracture gap and remained 1 mm elevated. In HP constructs, plates were applied with two conventional screws complemented by a single locked screw on each side of the fracture. Constructs were tested under dynamic loading to failure in bending, torsion, and axial loading to analyze construct strength and failure mechanism in each loading mode. Compared with the LP construct, the HP construct was 7% stronger in bending (p = 0.17), 42% stronger in torsion (p < 0.001), and 7% weaker in axial compression (p = 0.003). In bending, constructs failed by periprosthetic fracture. In torsion, LP constructs failed by screw breakage, and HP constructs failed by periprosthetic fracture or breakage of the locking screw. In axial compression, all constructs failed by screw migration. HP delivered similar bending strength and higher torsional strength than an all-locked bridge plating construct, while causing only a small decrease in axial strength. It may therefore provide an attractive alternative to an all-locked construct for plate fixation in the osteoporotic diaphysis.
    The Journal of trauma 08/2010; 69(2):411-7. · 2.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Locked bridge plating relies on secondary bone healing, which requires interfragmentary motion for callus formation. This study evaluated healing of fractures stabilized with a locked plating construct and a far cortical locking construct, which is a modified locked plating approach that promotes interfragmentary motion. The study tested whether far cortical locking constructs can improve fracture-healing compared with standard locked plating constructs. In an established ovine tibial osteotomy model with a 3-mm gap size, twelve osteotomies were randomly stabilized with locked plating or far cortical locking constructs applied medially. The far cortical locking constructs were designed to provide 84% lower stiffness than the locked plating constructs and permitted nearly parallel gap motion. Fracture-healing was monitored on weekly radiographs. After the animals were killed at week 9, healed tibiae were analyzed by computed tomography, mechanical testing in torsion, and histological examination. Callus on weekly radiographs was greater in the far cortical locking constructs than in the locked plating constructs. At week 9, the far cortical locking group had a 36% greater callus volume (p = 0.03) and a 44% higher bone mineral content (p = 0.013) than the locked plating group. Callus in the locked plating specimens was asymmetric, having 49% less bone mineral content in the medial callus than in the lateral callus (p = 0.003). In far cortical locking specimens, medial and lateral callus had similar bone mineral content (p = 0.91). The far cortical locking specimens healed to be 54% stronger in torsion (p = 0.023) and sustained 156% greater energy to failure in torsion (p < 0.001) than locked plating specimens. Histologically, three of six locked plating specimens had deficient bridging across the medial cortex, while all remaining cortices had bridged. Inconsistent and asymmetric callus formation with locked plating constructs is likely due to their high stiffness and asymmetric gap closure. By providing flexible fixation and nearly parallel interfragmentary motion, far cortical locking constructs form more callus and heal to be stronger in torsion than locked plating constructs.
    The Journal of Bone and Joint Surgery 07/2010; 92(7):1652-60. · 3.23 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study evaluated intramedullary fixation of rib fractures with Kirschner wires and novel ribs splints. We hypothesized that rib splints can provide equivalent fixation strength while avoiding complications associated with Kirschner wires, namely wire migration and cutout. The durability, strength, and failure modes of rib fracture fixation with Kirschner wires and rib splints were evaluated in 22 paired human ribs. First, intact ribs were loaded to failure to determine their strength. After fracture fixation with Kirschner wires and rib splints, fixation constructs were dynamically loaded to 360,000 cycles at five times the respiratory load to determine their durability. Finally, constructs were loaded to failure to determine residual strength and failure modes. All constructs sustained dynamic loading without failure. Dynamic loading caused three times more subsidence in Kirschner wire constructs (1.2 mm +/- 1.4 mm) than in rib splint constructs (0.4 mm +/- 0.2 mm, p = 0.09). After dynamic loading, rib splint constructs remained 48% stronger than Kirschner wire constructs (p = 0.001). Five of 11 Kirschner wire constructs failed catastrophically by cutting through the medial cortex, leading to complete loss of stability and wire migration through the lateral cortex. The remaining six constructs failed by wire bending. Rib splint constructs failed by development of fracture lines along the superior and interior cortices. No splint construct failed catastrophically, and all splint constructs retained functional reduction and fixation. Because of their superior strength and absence of catastrophic failure mode, rib splints can serve as an attractive alternative to Kirschner wires for intramedullary stabilization of rib fractures, especially in the case of posterior rib fractures where access for plating is limited.
    The Journal of trauma 05/2010; 68(5):1218-24. · 2.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Locked plating constructs may be too stiff to reliably promote secondary bone healing. This study used a novel imaging technique to quantify periosteal callus formation of distal femur fractures stabilized with locking plates. It investigated the effects of cortex-to-plate distance, bridging span, and implant material on periosteal callus formation. Retrospective cohort study. One Level I and one Level II trauma center. Sixty-four consecutive patients with distal femur fractures (AO types 32A, 33A-C) stabilized with periarticular locking plates. Osteosynthesis using indirect reduction and bridge plating with periarticular locking plates. Periosteal callus size on lateral and anteroposterior radiographs. Callus size varied from 0 to 650 mm2. Deficient callus (20 mm2 or less) formed in 52%, 47%, and 37% of fractures at 6, 12, and 24 weeks postsurgery, respectively. Callus formation was asymmetric, whereby the medial cortex had on average 64% more callus (P=0.001) than the anterior or posterior cortices. A longer bridge span correlated minimally with an increased callus size at Week 6 (P=0.02), but no correlation was found at Weeks 12 and 24 postsurgery. Compared with stainless steel plates, titanium plates had 76%, 71%, and 56% more callus at Week 6 (P=0.04), Week 12 (P=0.03), and Week 24 (P=0.09), respectively. Stabilization of distal femur fractures with periarticular locking plates can cause inconsistent and asymmetric formation of periosteal callus. A larger bridge span only minimally improves callus formation. The more flexible titanium plates enhanced callus formation compared with stainless steel plates.
    Journal of orthopaedic trauma 03/2010; 24(3):156-62. · 1.78 Impact Factor

Publication Stats

916 Citations
135.66 Total Impact Points

Institutions

  • 2002–2011
    • Oregon Health and Science University
      • Department of Orthopaedics & Rehabilitation
      Portland, OR, United States
  • 2010
    • University of Zurich
      Zürich, Zurich, Switzerland
    • Washington University in St. Louis
      • Department of Orthopaedic Surgery
      Saint Louis, MO, United States
  • 2009
    • University of Crete
      • Department of Orthopedics and Traumatology
      Retimo, Crete, Greece
  • 1997–1999
    • University of Iowa
      • Department of Biomedical Engineering
      Iowa City, IA, United States