Chuan-Yu Luo

Wannan Medical College, Wu-hu-shih, Anhui Sheng, China

Are you Chuan-Yu Luo?

Claim your profile

Publications (2)2.96 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The second mitochondria‑derived activator of caspases (Smac), an antagonist of the inhibitor of apoptosis protein (IAP), increases chemosensitivity in vitro. Survivin, an IAP family member, mediates cancer cell survival and chemoresistance. The present study investigated the correlation between Smac and survivin expression in primary breast cancer, and the sensitivity to anthracycline during neoadjuvant chemotherapy (NAC). Pre‑treatment biopsies and post‑anthracycline treatment tumor sections were analyzed from 98 cases. Biomarker expression was evaluated by immunohistochemistry in tumor samples from clinical stage II and III anthracycline‑based NAC‑treated breast cancer. A univariate analysis indicated that the estrogen receptor (ER), Smac and survivin were significantly predictive of a pathological complete response (pCR) (P=0.004, 0.001 and 0.037, respectively) in pre‑chemotherapy samples. ER, Smac and survivin expression was also significant for pCR on the multivariate analysis (P=0.001, 0.031 and 0.012, respectively). An inverse association was identified between survivin and Smac expression (r=‑0.217, P=0.032; and r=‑0.335, P=0.003, respectively) prior to and following NAC. The patients with low survivin expression or high Smac expression had significantly longer disease‑free survival (DFS; P=0.012 and P=0.020, respectively) and overall survival (OS; P=0.01 and P=0.033, respectively) compared with the patients with high survivin or low Smac expression. Cox regression analyses demonstrated that survivin, Smac and clinical stage were independent predictors for DFS and OS. The present study indicated the significance of Smac and survivin in determining the breast cancer response to anthracycline‑based chemotherapy, and may permit further stratifying of pre‑chemotherapy patients to undertake more tailored treatments.
    Molecular Medicine Reports 12/2013; 9(2). DOI:10.3892/mmr.2013.1842 · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. Methods The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. Results VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node, metastasis (TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. Conclusions This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.
    World Journal of Surgical Oncology 08/2012; 10(1):165. DOI:10.1186/1477-7819-10-165 · 1.41 Impact Factor