Carina Peritore

University of Toledo, Toledo, Ohio, United States

Are you Carina Peritore?

Claim your profile

Publications (3)11.26 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins are NAD-dependent protein deacetylases that were shown to have protective effects against different age-related diseases. SIRT2 is a strong deacetylase that is highly expressed in brain. It has been associated with neurodegenerative diseases. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a dopaminergic neurotoxin that displays clinical features of Parkinson's Disease (PD). MPTP leads to the degeneration of nigrostriatal dopaminergic pathway after its systemic administration. Chronic administration of MPTP induces lesion via apoptosis. We show here that SIRT2 deacetylates Foxo3a, increases RNA and protein levels of Bim, and as a result enhances apoptosis in the MPTP model of PD. We also show that neurodegeneration induced by chronic MPTP regimen is prevented by genetic deletion of SIRT2 in mouse. Deletion of SIRT2 leads to the reduction of apoptosis due to an increase in acetylation of Foxo3a and a decrease in Bim levels. We demonstrate that SIRT2 deacetylates Foxo3a, activates Bim, and induces apoptosis only in MPP(+)-treated cells. Therefore, designing SIRT2 inhibitors might be helpful in developing effective treatments for PD.
    Frontiers in Aging Neuroscience 01/2014; 6:184. · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of polyphenol antioxidant compounds derived from natural products have demonstrated neuroprotective activity against neuronal cell death. The objective of this study was to investigate the effect of resveratrol (RESV) and bioflavonoids in attenuating hydrogen peroxide (H2O2)-induced oxidative stress in neuronal cells. H2O2 levels were increased by the addition of L-3,4-dihydroxyphenylalanine (L-DOPA) to cultured dopaminergic SKNSH cells. H2O2 was monitored by peroxyfluor-1, a selective H2O2 optical probe. To examine the neuroprotective effects of RESV and bioflavonoids against L-DOPA, we cotreated RESV, quercetin, or (-) epigallocatechin gallate with L-DOPA and monitored for H2O2 levels. The combination of RESV and L-DOPA was 50% more effective at reducing H2O2 levels than the combination of quercetin or epigallocatechin gallate with L-DOPA. However, the combination of each antioxidant with L-DOPA was effective at preserving cell viability.
    Neuroreport 12/2012; 23(17):989-94. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins are NAD-dependent protein deacetylases that were shown to have beneficial effects against age-related diseases. SIRT2 is a strong deacetylase that is highly expressed in brain. It has been associated with neurodegenerative diseases. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a dopaminergic neurotoxin that replicates most of the clinical features of Parkinson disease (PD) and produces a reliable and reproducible lesion of the nigrostriatal dopaminergic pathway and neurodegeneration after its systemic administration. Chronic administration of MPTP induces lesion via apoptosis. We show here that SIRT2 deacetylates Foxo3a, increases RNA and protein levels of Bim, and as a result, enhances apoptosis in the MPTP model of PD. We also show that neurodegeneration induced by chronic MPTP regimen is prevented by genetic deletion of SIRT2 in mouse. Deletion of SIRT2 leads to the reduction of apoptosis due to an increase in acetylation of Foxo3a and a decrease in Bim levels. We demonstrate that SIRT2 deacetylates Foxo3a, activates Bim, and induces apoptosis only in 1-methyl-4-phenylpyridinium-treated cells. Therefore, designing SIRT2 inhibitors might be helpful to develop effective treatments for PD.
    Journal of Biological Chemistry 08/2012; 287(39):32307-11. · 4.65 Impact Factor