Vincent J. Catalano

University of Nevada, Reno, Reno, NV, United States

Are you Vincent J. Catalano?

Claim your profile

Publications (78)220.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: An N,N-carbonyl-bridged dipyrrinone oxime has been synthesized and studied as a potential sensor for organophosphates. The molecular sensor underwent a drastic colorimetric response upon formation of the adduct. The pesticide dimethoate was found to produce the biggest spectral response, with a limit of detection equal to 4.0 ppm using UV-visible spectroscopy. Minimal fluorescence "turn on" via a PET mechanism was seen, and molecular modeling studies were used to explain the lower than expected PET response. The X-ray crystal structure of the fluorescent dipyrrinone oxime was also obtained.
    Organic Letters 05/2012; 14(11):2686-9. · 6.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The trigonally coordinated [AuCu(PPh(2)py)(3)](BF(4))(2) (1) crystallizes in two polymorphs and a pseudopolymorph, each of which contains a trigonally coordinated cation with short Au(I)-Cu(I) separations of ∼2.7 Å. Under UV illumination, these crystals luminesce different colors ranging from blue to yellow. The structures of these cations are nearly superimposable, and the primary difference resides in the relative placement of the anions and solvate molecules. As confirmed by time-dependent density functional theory calculations, it is these interactions that are responsible for the differential emission properties.
    Inorganic Chemistry 02/2012; 51(3):1207-9. · 4.59 Impact Factor
  • Christoph E Strasser, Vincent J Catalano
    [Show abstract] [Hide abstract]
    ABSTRACT: The picolyl-substituted NHC complex [Au(im(CH(2)py)(2))(2)]PF(6) (1) reacts with two equivalents of copper(I) halides, affording compounds [Au(im(CH(2)py)(2))(2)(CuX)(2)]PF(6) (X = Cl, 2; Br, 3; I, 4). Each complex contains a nearly linearly coordinated [Au(NHC)(2)](+) center where the two picolyl groups on each im(CH(2)py)(2) ligand chelate a single copper atom. The Cu(I) center resides in a distorted tetrahedral environment and is coordinated to two pyridyl groups, a halide ion, and a gold metalloligand. The Au(I)-Cu(I) separations measure 2.7030(5), 2.6688(9), and 2.6786(10) Å for 2-4, respectively. Additionally, each Cu(I) center is further coordinated by a semibridging NHC ligand with short Cu-C separations of ~2.3 Å. In solution, these complexes dissociate the Cu(I) ion. In the solid state, 2-4 are photoluminescent with respective emission maxima of 512, 502, and 507 nm. The reaction of [Au(im(CH(2)py)(2))(2)]PF(6) with four equivalents of CuBr afforded the coordination polymer {[AuCu(2)Br(2)(im(CH(2)py)(2))(2)]Br·3CH(3)CN}(n) (5). This polymeric complex contains [Au(NHC)(2)](+) units interconnected by Cu(2)Br(2) dimers. In 5, the Au-Cu separations are long at 4.23 and 4.79 Å, while the Cu-Cu distance is considerably shorter at 2.9248(14) Å. In the solid state, 5 is photoluminescent with a broad band appearing at 533 nm.
    Inorganic Chemistry 11/2011; 50(21):11228-34. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 Å. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 Å. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.
    Inorganic Chemistry 08/2011; 50(17):8465-76. · 4.59 Impact Factor
  • Christoph E Strasser, Vincent J Catalano
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of the Au(I) N-heterocyclic carbene (NHC) compound [Au(im(CH(2)py)(2))(2)]PF(6) with 2 equiv of [Cu(MeCN)(4)]PF(6) affords the tricationic compound [Au(im(CH(2)py)(2))(2)(Cu(MeCN)(2))(2)](PF(6))(3) (1), which exhibits blue luminescence (lambda(max) = 462 nm). Reaction of 1 with either liquid MeOH or MeOH vapor affords [Au(im(CH(2)py)(2))(2)(Cu(MeOH))(2)](PF(6))(3) (2), which produces green luminescence (lambda(max) = 520 nm) under UV excitation. The molecular structures of 1 x 2MeCN and 2 x 2MeOH.2Et(2)O were determined by single-crystal X-ray diffraction. Compound 1 contains a linearly coordinated [Au(NHC)(2)](+) core in which each picolyl side arm bridges a [Cu(MeCN)(2)](+) center. The Au...Cu separations are long at 4.596 A. Compound 2 exhibits two short Au...Cu interactions of 2.7195(7) A, with the Au(NHC)(2) core acting as an additional ligand toward each copper center to complete its tetrahedral coordination mode. Exposure of 2 to atmosphere produces a partial loss of MeOH accompanied by a luminescence color change to yellow (lambda(max) = 543 nm). The uptake and loss of MeOH vapor is rapid and reversible. Exposure of 2 to vacuum affords complete loss of MeOH, and the luminescence changes to yellow-orange (lambda(max) = 573 nm). Treatment of 2 with MeCN vapor regenerates 1. The interconversion of 1 and 2 was confirmed by powder X-ray diffraction. Compound 1 also reacts with acetone and H(2)O vapors, leading to species that produce yellow-orange (lambda(max) = 591 nm) and green (lambda(max) = 519 nm) emission, respectively. Compounds 1 and 2 are examples of molecular vapochromic materials that exhibit large changes in the emission though ligand substitution reactions between the solid complex and solvent vapors. The dramatic color change likely results from the "on-off" Au...Cu interactions induced by the ligand exchange reaction.
    Journal of the American Chemical Society 07/2010; 132(29):10009-11. · 10.68 Impact Factor
  • Vincent J Catalano, Adam L Moore, Jason Shearer, Jineun Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH(3)imCH(2)quin)(2)]BF(4) and Au(CH(3)imCH(2)py)(2)]BF(4) was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH(3)imCH(2)quin)(2)]BF(4) or [Au(CH(3)imCH(2)py)(2)]BF(4) produces trimetallic complexes containing Cu(2)X(2)-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity (approximately 2.5-2.6 A) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separations of approximately 2.5 A found in the iodo-complexes and the longest separations of 2.9 A found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from approximately 2.8 to 3.0 A. In the absence of halides, the dimetallic complex [AuCu(CH(3)imCH(2)py)(2)(NCCH(3))(2)](BF(4))(2), containing a long Au-Cu distance of approximately 4.72 A is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH(3)imCH(2)quin)(2)]BF(4) the deep-red, dimetallic compound, AuCuBr(2)(CH(3)imCH(2)quin)(2), was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.
    Inorganic Chemistry 11/2009; 48(23):11362-75. · 4.59 Impact Factor
  • Amit K. Ghosh, Vincent J. Catalano
    [Show abstract] [Hide abstract]
    ABSTRACT: The reaction of [Au(CH3impy)2]PF6 (2), with substituted silver benzoate salts bearing different halide substituents produced a series of new mixed-metal species having two different structural motifs. One structural motif contains discrete tetrametallic Ag2Au2 diamond cores, whereas the other motif contains the same tetrametallic diamond core interconnected by benzoate-bridged silver dimers to form polymers. All the complexes are substitution-inert and stable both in the solid state as well as in solution. We also report the synthesis of oxidative addition products of [Au(CH3impy)2]PF6, which were also obtained during our attempts to oxidize the above-mentioned multimetallic assembly with bromine and iodine. Compounds 3–7 are intensely luminescent in frozen acetonitrile solution, but surprisingly no luminescence is observed at room temperature. All the complexes were completely characterized by 1H, 13C NMR, electronic absorption, emission spectroscopy, elemental analysis and X-ray crystallography. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
    Berichte der deutschen chemischen Gesellschaft 03/2009; 2009(13):1832 - 1843. · 2.94 Impact Factor
  • Guozhu Zhang, Vincent J. Catalano, Liming Zhang
    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2008; 39(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Starting from the Ru(bpp)Cl3 precursor (1), a family of novel heteroleptic RuII complexes of the general formulae [Ru(bpp)(dcbpyH)(X)] [X = Cl– (2a), NCS–, (3)] and Na[Ru(bpp)(dcbpy)(CN)] (4) with the ligands 2,6-bis(1-pyrazolyl)pyridine (bpp) and 2,2′-bipyridine-4,4′-dicarboxylic acid (dcbpyH2) has been synthesized, spectroscopically characterized, and attached to nanocrystalline TiO2 electrodes to be tested as solar cell sensitizers. Addition of HCl to (2a) led to the corresponding cationic derivative [Ru(bpp)(dcbpyH2)Cl]Cl (2b). All complexes were characterized by FT-IR, FT-Raman, UV/Vis, 1H NMR spectroscopy, elemental analysis, and mass spectrometry. Complex 4 and the previously reported [Ru(bdmpp)(dcbpyH2)Cl](PF6) (5) [bdmpp is 2,6-bis(3,5-dimethyl-1-pyrazolyl)pyridine] were characterized by single-crystal X-ray diffraction. The photo-electochemical properties of the dyes 2–4 were investigated and the efficiency of the corresponding dye-sensitized solar cells was compared to the sensitizing performance of the cis-[Ru(dcbpyH)2(NCS)2](NBu4)2 (N719) dye.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
    Berichte der deutschen chemischen Gesellschaft 11/2007; 2007(36):5633 - 5644. · 2.94 Impact Factor
  • Guozhu Zhang, Vincent J Catalano, Liming Zhang
    Journal of the American Chemical Society 10/2007; 129(37):11358-9. · 10.68 Impact Factor
  • Vincent J Catalano, Anthony O Etogo
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of the imidazolium N-heterocyclic carbene precursor containing a methyl-substituted pyridyl functionality [HCH3im(CH3py)]PF6, 1, with Ag2O produces the homoleptic Ag(I) complex, [Ag(CH3im(CH3py))2]PF6, 2. In a simple carbene transfer reaction the analogous Au(I) species, [Au(CH3im(CH3py))2]PF6, 3, is formed by treatment of 2 with Au(tht)Cl in dichloromethane. Both 2 and 3 are structurally similar with nearly linearly coordinated NHC ligands. The methyl group appended to the pyridyl ring inhibits rotation of the pyridyl group at room temperature. Addition of AgBF4 to a hot propionitrile solution of 3 followed by crystallization with diethyl ether yields the one-dimensional coordination polymer, {[AuAg(CH3im(CH3py))2(NCCH2CH3)](BF4)2}n, 4, which contains Au-Ag separations of 2.9845(5) and 2.9641(5) A with intermetallic angles of 167.642(14) degrees and 162.081(9) degrees. This material is intensely luminescent in the solid state and exhibits an emission band at 453 nm (lambdaex=350 nm). Nearly colorless [Pd(CH3im(CH3py))2Cl]PF6, 5, is produced upon treatment of 2 with PdCl2(NCC6H5)2. The Pd(II) center in 5 is coordinated to one NHC ligand in a chelate fashion, while the second NHC is bound solely through the carbon center. The X-ray crystal structures of 1-5 are reported.
    Inorganic Chemistry 08/2007; 46(14):5608-15. · 4.59 Impact Factor
  • Liming Huang, Vincent J Catalano, Suk-Wah Tam-Chang
    [Show abstract] [Hide abstract]
    ABSTRACT: In this communication, we report the self-organization of a perylenedicarboximide to produce materials that exhibit dichroic (direction-dependent) absorption and anisotropic fluorescence emission of visible light.
    Chemical Communications 06/2007; · 6.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present our investigations of 2-ethyl-3-methyl-(10H)-dipyrrin-1-one, its self-association, and anion binding properties. This receptor is easily accessible in a facile single step synthesis with a straightforward workup. An examination of the concentration dependence of the dipyrrinone NH chemical shifts in CDCl3 and (CDCl2)2 over the temperature range from −20 °C to 100 °C determined the self-association constant to be 3850 M−1. Molecular recognition studies have shown that it has a preference for guests with an OH moiety, such as hydrogen sulfate (HSO4−) and carboxylic acids (RCO2H).Graphical abstract
    Tetrahedron. 01/2007; 63(52):12994-12999.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.
    Journal of Medicinal Chemistry 03/2006; 49(4):1291-312. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: "Sterically geared" 9-(2,2,2-triphenylethylidene)fluorene (1) is of potential interest as a photoactive moiety in molecular devices, and the 2-tert-butyl derivative (6) has been synthesized to investigate photoisomerization. E and Z stereoisomers of 6 were separated and identified by X-ray crystallography. The tert-butyl group does not introduce additional strain, and its close proximity to the trityl group in the Z isomer suggests an attractive van der Waals interaction. The UV spectra of (E)-6 and (Z)-6 are nearly identical, showing absorption bands that are similar to those of fluorene occurring at wavelengths longer than 240 nm. Photoisomerization of 6 was investigated at 266, 280 and 320 nm. Solutions initially containing only (E)-6 or (Z)-6 were irradiated with pulsed laser light, monitoring isomerization by 1H NMR spectroscopy. Negligible photodecomposition was observed when the solutions were agitated by N2 ebullition. Experimental data were fitted to theoretical curves to obtain photoisomerization quantum yields (phi(ZE) and phi(EZ)) ranging from 0.04 to 0.09. This first photoisomerization study of a dibenzofulvene reveals significant quantum yields, despite theoretical prediction of inefficient or negligible isomerization of the parent hydrocarbon, fulvene. Thermal isomerization of 6 at 270 degrees C (t(1/2) = 120 min) was also followed by 1H NMR spectroscopy, resulting in an estimated activation energy (deltaG(double dagger)) of 43 kcal/mol.
    The Journal of Physical Chemistry A 01/2006; 109(51):11650-4. · 2.77 Impact Factor
  • Vincent J Catalano, Adam L Moore
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-heterocyclic carbene (NHC) precursor, 1-methyl-3-(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [HCH3im(CH2py)]BF4, reacted with AgBF4 in the presence of aqueous NaOH to produce the silver complex [Ag(CH3im(CH2py))2]BF4 (1) which was then reacted with Au(tht)Cl to form the corresponding gold(I) complex, [Au(CH3im(CH2py))2]BF4 (2). Complex 2 reacted with 1 equiv of AgBF4 to produce the mixed-metal species [AuAg(CH3im(CH2py))2](BF4)2 (3). The reaction of 2 with 1 equiv of Au(tht)Cl followed by metathesis with NaBF4 produces the dimetallic gold complex [Au2(CH3im(CH2py))2](BF4)2 (4). The reaction of [Ag(CH3im(CH2py))2]BF4 (1) with 1 equiv of AgBF4 produces the trinuclear [Ag3(CH3im(CH2py))3(NCCH3)2](BF4)3 (5) complex, which appears to dissociate into a dimetallic complex in solution. Complexes 1-5 were characterized by 1H NMR, 13C NMR, UV-vis, luminescence spectroscopy, elemental analysis, mass spectrometry, and X-ray crystallography. The CH3im(CH2py) ligands in 3 are arranged in a head-to-head fashion spanning a Au-Ag separation of 3.0318(5) A with the carbene portion of the ligand remaining coordinated to the Au(I) center. In 4, the ligands are arranged in a head-to-tail fashion with an Au-Au separation of 3.1730(5) A. In 5, the ligands bridge the nearly symmetrical Ag3 triangular core with short Ag-Ag separations of 2.7765(8), 2.7832(8), and 2.7598(8) A. All of these complexes, including the ligand precursor, are intensely luminescent in solution and the solid state.
    Inorganic Chemistry 10/2005; 44(19):6558-66. · 4.59 Impact Factor
  • Vincent J. Catalano, Anthony O. Etogo
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of [Ag(CH3impy)2]PF6, 1, with Au(tht)Cl produces the monometallic Au(I)-species [Au(CH3impy)2]PF6, 2. Treatment of 2 with excess AgBF4 in acetonitrile, benzonitrile or benzylnitrile produces the polymeric species {[AuAg(CH3impy)2(L)](BF4)2}n, (L=CH3CN,3; L=C6H5CN, 4; L=C6H5CH2CN, 5) where the Au(I) centers remain bound to two carbene moieties while the Ag(I) centers are coordinated to two alternating pyridyl groups and a solvent molecule (L). Reaction of 2 with AgNO3 in acetonitrile produces the zig-zag mixed-metal polymer {[AuAg(CH3impy)2(NO3)]NO3}n, 6, that contains a coordinated nitrate ion in place of the coordinated solvent species. All of these polymeric materials are dynamic in solution and dissociate into their respective monometallic components. Compounds 2–6 are intensely luminescent in the solid-state and in frozen solution. All of these complexes were characterized by 1H, 13C NMR, electronic absorption and emission spectroscopy and elemental analysis.
    Journal of Organometallic Chemistry 01/2005; 690:6041-6050. · 2.00 Impact Factor
  • Vincent J Catalano, Mark A Malwitz, Anthony O Etogo
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of 1,3-bis(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [H(pyCH(2))(2)im]BF(4), with silver oxide in dichloromethane readily yields [Ag((pyCH(2))(2)im)(2)]BF(4), 1.BF(4)(). 1.BF(4) is converted to the analogous Au(I)-containing species, [Au((pyCH(2))(2)im)(2)]BF(4), 3, by a simple carbene transfer reaction in dichloromethane. Further treatment with two equivalents of AgBF(4) produces the trimetallic species [AuAg(2)((pyCH(2))(2)im)(2)(NCCH(3))(2)](BF(4))(3), 4, which contains two silver ions each coordinated to the pyridine moieties on one carbene ligand and to an acetonitrile molecule in a T-shaped fashion. Monometallic [Ag((py)(2)im)(2)]BF(4), 5, and [Au((py)(2)im)(2)]BF(4), 6, are made analogously to 1.BF(4) and 3 starting from 1,3-bis(2-pyridyl)-imidazol-2-ylidene tetrafluoroborate, [H(py)(2)im]BF(4). Addition of excess AgBF(4) to 6 yields the helical mixed-metal polymer, ([AuAg((py)(2)im)(2)(NCCH(3))](BF(4))(2))(n), 7 which contains an extended Au(I)-Ag(I) chain with short metal-metal separations of 2.8359(4) and 2.9042(4) A. Colorless, monometallic [Hg((pyCH(2))(2)im)(2)](BF(4))(2), 8, is easily produced by refluxing [H(pyCH(2))(2)im)]BF(4) with Hg(OAc)(2) in acetonitrile. The related quinolyl-substituted imidazole, [H(quinCH(2))(2)im]PF(6), is produced analogously to [H(pyCH(2))(2)im]BF(4). [Hg((quinCH(2))(2)im)(2)](PF(6))(2), 9, is isolated in good yield as a white solid from the reaction of Hg(OAc)(2) and [H(quinCH(2))(2)im]PF(6). The reaction of [H(quinCH(2))(2)im]PF(6) with excess Ag(2)O produces the triangulo-cluster [Ag(3)((quinCH(2))(2)im)(3)](PF(6))(3), 11. All of these complexes were studied by (1)H NMR spectroscopy, and complexes 3-9 were additionally characterized by X-ray crystallography. These complexes are photoluminescent in the solid state and in solution with spectra that closely resemble those of the ligand precursor.
    Inorganic Chemistry 10/2004; 43(18):5714-24. · 4.59 Impact Factor
  • Brahmananda Ghosh, Vincent J. Catalano, David A. Lightner
    [Show abstract] [Hide abstract]
    ABSTRACT: Crystal structure determinations of two novel bilirubin analogs with spirocyclohexyl and spirofluorenyl groups at C(10) are reported. Conformation-determining torsion angles and key hydrogen bond distances and angles are compared to those from molecular dynamics calculations, and to the corresponding data from X-ray determinations and molecular dynamics calculations of bilirubin. Like bilirubin, the component dipyrrinones of spirocyclohexyl and spirofluorenyl rubins are present in the bis-lactam form with (Z)-configuration double bonds at C(4) and C(15). Their crystal structures show considerable similarity to that of bilirubin: both pigments adopt a folded, intramolecularly hydrogen-bonded ridge-tile conformation stabilized by six hydrogen bonds. The interplanar angle of the spirocyclohexyl ridge-tile is nearly the same (94) as that of bilirubin (95), but the interplanar angle of the spirofluorenyl ridge-tile is noticeably smaller (84). The hydrogen bond distances of both spiro-rubin crystal structures are generally longer by 0.1–0.2 than those in bilirubin. Both new pigments exhibit excellent lipophilicity and, unlike bilirubin, are soluble in methanol.
    Monatshefte fuer Chemie/Chemical Monthly 09/2004; 135(10):1305-1317. · 1.63 Impact Factor
  • Vincent J Catalano, Mark A Malwitz
    [Show abstract] [Hide abstract]
    ABSTRACT: The deep-red, air-stable mixed-metal metallocryptands, [AuPdTl(P2phen)3](PF6)2, 1.(PF6)2, and [AuPtTl(P2phen)3](PF6)2, 2.(PF6)2, are easily prepared in good yield (60-70%) by reacting 3 equiv of P2phen with 1 equiv of Au(THT)Cl, excess thallous acetate, and the appropriate amount of either Pd2(dba)3 for 1 or Pt(dba)2 for 2 in acetonitrile where P2phen is 2,9-bis(diphenylphosphino)-1,10-phenanthroline, THT is tetrahydrothiophene, and dba is dibenzylidineacetone. Compared to the more symmetrical bimetallic metallocryptands, these trimetallic species show shorter than expected Au(I)-Tl(I), Pt(0)-Tl(I), and Pd(0)-Tl(I) separations. The enhanced bonding interaction is attributed to the incorporation of the dissimilar capping metals introducing dipole moments that strengthen the dispersion forces responsible for maintaining the metallophilic interactions.
    Journal of the American Chemical Society 07/2004; 126(21):6560-1. · 10.68 Impact Factor

Publication Stats

380 Citations
220.97 Total Impact Points

Institutions

  • 1996–2012
    • University of Nevada, Reno
      • Department of Chemistry
      Reno, NV, United States
    • Dalhousie University
      Halifax, Nova Scotia, Canada
  • 1997–1999
    • Occidental College
      • Department of Chemistry
      Los Angeles, CA, United States