C Pustovrh

University of Buenos Aires, Buenos Aires, Buenos Aires F.D., Argentina

Are you C Pustovrh?

Claim your profile

Publications (21)57.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin is involved in many metabolic and reproductive events and its levels are altered by the diabetic pathology. In this study, leptin concentrations and leptin effects on both nitric oxide (NO) and lipid concentrations were investigated in embryos from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Embryos from control and diabetic rats were obtained on days 10.5 and 13.5 of gestation, corresponding to early organogenesis and post-placentation periods respectively. Leptin was analysed by enzyme immunoanalysis and immunohistochemistry. Nitrates and nitrites were assessed as an index of NO production. Lipid concentrations were analysed by thin layer chromatography. Leptin concentrations were decreased in embryos obtained from diabetic rats on days 10.5 and 13.5 of gestation when compared to controls. NO concentrations, elevated in diabetic embryopathy, were diminished in the presence of leptin in the embryos obtained from control and diabetic animals both during early organogenesis and after placentation. Leptin additions reduced phospholipid, cholesterol and cholesteryl ester concentrations in embryos obtained from diabetic rats during early organogenesis, although no leptin effects on lipid concentrations were observed in control embryos at this developmental stage. In embryos obtained on day 13.5 of gestation leptin additions reduced cholesteryl ester concentrations in controls, and diminished cholesteryl ester, triglycerides and phospholipids in embryos from diabetic rats. We demonstrated that leptin plays a role in the regulation of NO concentrations and lipid homeostasis during embryo organogenesis and that the diabetic environment causes a reduction of leptin concentrations in rat embryos.
    Diabetes/Metabolism Research and Reviews 11/2007; 23(7):580-8. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin has significant effects on appetite, energy expenditure, lipid mobilisation and reproduction. During pregnancy, leptin is produced in the placenta, a tissue in which leptin receptors are highly expressed, suggesting autocrine/paracrine functions for this hormone. In the present study, a putative role of leptin as a regulator of nitric oxide (NO) production and lipid metabolism was evaluated in term human placenta. We demonstrated that leptin enhanced NO production in human placental explants (P < 0.01). Although leptin did not modify the placental levels of cholesteryl esters and phospholipids, leptin decreased levels of triglycerides (P < 0.01) and cholesterol (P < 0.001) in term human placenta. The effect of leptin on lipid mass seems to be independent of the modulation of de novo lipid synthesis because leptin did not modify the incorporation of (14)C-acetate into any of the lipids evaluated. We investigated the effects of leptin on placental lipid catabolism and found that in both term human placental explants and primary cultures of trophoblastic cells, leptin increased glycerol release, an index of the hydrolysis of esterified lipids, in a dose-dependent manner. In conclusion, we have shown that leptin affects NO production and lipid catabolism in human placenta, providing supportive evidence for a role of leptin in placental functions that would determine the transfer of nutrients to the developing fetus.
    Reproduction Fertility and Development 01/2006; 18(4):425-32. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal diabetes significantly increases the risk of congenital malformation, a syndrome known as diabetic embryopathy. Nitric oxide (NO), implicated in embryogenesis, has been found elevated in embryos from diabetic rats during organogenesis. The developmental signaling molecules endothelin-1 (ET-1) and 15-deoxy delta(12,14)prostaglandin J2 (15dPGJ2) downregulate embryonic NO levels. In the presence of NO and superoxide, formation of the potent oxidant peroxynitrite may occur. Therefore, we investigated peroxynitrite-induced damage, ET-1 and 15dPGJ2 concentrations, and the capability of ET-1, 15dPGJ2 and prostaglandin E2 (PGE2) to regulate NO production in embryos from severely diabetic rats (streptozotocin-induced before pregnancy). We found intense nitrotyrosine immunostaining (an index of peroxynitrite-induced damage) in neural folds, neural tube and developing heart of embryos from diabetic rats (P < 0.001 vs controls). We also found reduced ET-1 (P < 0.001) and 15dPGJ2 (P < 0.001) concentrations in embryos from diabetic rats when compared with controls. In addition, the inhibitory effect of ET-1, 15dPGJ2 and PGE2 on NO production found in control embryos was not observed in embryos from severely diabetic rats. In conclusion, both the demonstrated peroxynitrite-induced damage and the altered levels and function of multiple signaling molecules involved in the regulation of NO production provide supportive evidence of nitrosative stress in diabetic embryopathy.
    Reproduction (Cambridge, England) 12/2005; 130(5):695-703. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 15-Deoxy-Delta(12,14)-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor (3) (PPAR(3)) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPAR(3) activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of (14)C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPAR(3) activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPAR(3). We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPAR(3) were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.
    Reproduction Fertility and Development 02/2005; 17(4):423-33. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes induces alterations which condition placental remodelling. The levels of nitric oxide (NO) (a modulator of placental invasiveness, differentiation and proliferation) were higher in term placental explants from diabetic patients when compared to controls. Peroxisome proliferator-activated receptor gamma (PPARgamma) activation by its endogenous ligand 15-deoxy Delta(12,14)prostaglandin J(2) (15dPGJ(2)), is a differentiating factor of adipocytes and other cell types, such as trophoblasts. 15dPGJ(2) is also able to down-regulate NO production in different cell types. Our study evaluated the levels of 15dPGJ(2) and PPARgamma and the influence of PPARgamma activation by 15dPGJ(2) on the production of NO, in term placental tissues from control, pre-gestational and gestational diabetic patients. Our results showed that 15dPGJ(2) was present in human term placenta, and that its levels were diminished in gestational (P<0.05) and pre-gestational (P<0.002) diabetic women when compared to controls. Exogenous 15dPGJ(2) addition (2 x 10(-6) mol/l) down-regulated NO production in placenta from control (P<0.001) and pre-gestational diabetic (P<0.01) patients, but failed to do so in gestational diabetic women, whose placental PPARgamma expression was diminished in comparison to controls (P<0.001). As the exogenous activation of PPARgamma prevented NO overproduction in placenta from pre-gestational diabetic women, it may have the potential to improve fetal outcome in this pathology.
    Molecular Human Reproduction 09/2004; 10(9):671-6. · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin production by placental tissues contributes to its circulating levels and functions. The diabetic pathology induces alterations in leptin levels. In the present study, leptin levels were evaluated in placental tissue from control and neonatal streptozotocin-induced (n-STZ) diabetic rats during late gestation. The effects of leptin levels on the generation of nitric oxide (NO), prostaglandin (PG) E(2) production and lipid metabolism were examined. Leptin levels were diminished in placentas from n-STZ diabetic rats compared with controls (P < 0.01). These differences were also evident when leptin was evaluated immunohistochemically. Addition of leptin (1 nM) in vitro enhanced NO production in control (66%) and diabetic placentas (134%) by stimulating NO synthase activity (by 38% and 54%, respectively). The addition of leptin increased PGE(2) production in placentas from control (173%) and diabetic rats (83%) and produced a 50% decrease in placental lipid levels (phospholipids, triacylglycerides, cholesterol and cholesteryl ester) without involving a reduction in de novo lipid synthesis. These data indicate that leptin enhances the production of placental NO and PGE(2), vasoactive agents that modify placental blood flow, and that leptin stimulates placental lipid metabolism, probably generating more lipids for transfer to the fetus. In the diabetic rat, placental leptin was reduced, probably as a response to the maternal environment to locally regulate the transfer of nutrients to the developing fetus.
    Reproduction Fertility and Development 01/2004; 16(3):363-72. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin-1 (ET-1), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) are regulators of feto-placental hemodynamics. In this study we explore the inter-regulatory pathways that modulate the levels of these vasoactive agents in control and neonatal streptozotocin-induced (n-stz) diabetic rat placenta. ET-1 levels are increased in diabetic placenta when compared to controls (P<0.001), and are strongly reduced by an NO synthase inhibitor (P<0.001). PGE(2) production is increased in diabetic placenta when compared to controls (P<0.01), but these levels are not modulated by ET-1. NO levels, similar in control and in diabetic placenta, are not influenced by PGE(2), but they are negatively modulated by ET-1 in both control (P<0.05) and diabetic (P<0.01) placenta. We conclude that rat placental ET-1 inhibits NO levels but does not modify PGE(2) concentrations. The elevated levels of ET-1 and PGE(2) in diabetic placenta, potent vasoconstrictors of placental vasculature, are probably related to the induction of placental insufficiency and fetal hypoxia in this pathology.
    Prostaglandins Leukotrienes and Essential Fatty Acids 04/2003; 68(3):225-31. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate a reciprocal signaling interaction initiated by embryo-derived nitric oxide (NO) to facilitate implantation by increased production of gelatinase A (matrix metalloproteinase 2, MMP2) in uterine stroma. Experimental animal studies. Reproductive-physiology research laboratory. Female syngeneic Wistar rats aged 14 weeks. Vaginal smears to confirm pregnancy. Oviductal ligature to avoid the descent of blastocysts to the uterine lumen. Plasma exudation assays to locate uterine blastocyst implantation sites. Organ cultures treated with NO donors and nitric oxide synthase (NOS) inhibitors. Expression of MMP2 and NO was assessed by Western blot and zymography of tissue extracts and by immunofluorescence of tissue sections. An increase in MMP2 activity was found in uterine extracts in early pregnant rats and was concentrated at implantation sites. Immunolocalization experiments showed that inducible NOS was expressed on the surface of the implanting blastocyst adjacent to the uterine epithelium at the sites of increased MMP2 expression. In organ culture experiments, NO donors were found to increase, whereas NOS inhibitors were found to decrease MMP2 activity in uterine tissue sections. Blastocyst-derived NO contributes to the production of uterine-derived MMP2, an essential component of implantation and initiation of placentation.
    Fertility and Sterility 01/2003; 78(6):1278-87. · 4.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concentration of 15-deoxy Delta(12,14)PGJ(2) (15dPGJ(2)) and its effects on nitric oxide generation and neutral lipid in embryos from control and neonatal streptozotocin-induced (n-stz) diabetic rats during organogenesis were investigated. 15dPGJ(2) is produced in embryos during organogenesis, and its production is lower in embryos of n-stz diabetic rats than in embryos from control rats. Nitrate and nitrite concentrations were higher in embryos from n-stz diabetic rats and were reduced in the presence of 15dPGJ(2) both in embryos from control and diabetic rats. Thus, decreased 15dPGJ(2) concentrations in embryos from n-stz diabetic rats may be related to the high nitric oxide concentrations found in those embryos. Exogenous 15dPGJ(2) decreased cholesterol and cholesteryl ester concentrations in embryos from control and n-stz diabetic rats, and reduced triacylglycerol concentrations in control embryos. Incorporation of [(14)C]acetate into lipids showed decreased de novo synthesis of cholesteryl ester and triacylglycerides in embryos from n-stz diabetic rats compared with controls. Exogenous 15dPGJ(2) reduced the incorporation of [(14)C]acetate into triacylglycerides, cholesterol and cholesteryl ester in embryos from both control and n-stz diabetic rats. 15dPGJ(2) is present in embryos during organogenesis, and reduces embryonic nitric oxide production and lipid synthesis. The lower 15dPGJ(2) concentration in embryos from n-stz diabetic rats may result in developmental alterations in this diabetic model.
    Reproduction (Cambridge, England) 12/2002; 124(5):625-31. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 15-deoxy-delta (12,14)prostaglandin J(2) (15d-PGJ(2)) has been identified as a natural ligand of the PPARgamma subtype. PPAR activation in nonadipose tissues seems to inhibit iNOS and COX2 expression. Vasoactive compounds like nitric oxide and prostaglandins are increased in pancreatic tissue from streptozotocin-diabetic rats. We hypothesize that 15d-PGJ(2) may regulate the production of these proinflammatory compounds that lead to beta cell destruction in the diabetic pathology. In this work we evaluated Ca(2+)-dependent (cNOS) and Ca(2+)-independent (iNOS) activity, nitrate/nitrite levels, 15-dPGJ(2) and prostaglandin E(2) (PGE(2)) levels in isolated pancreatic islets, and 15d-PGJ(2) levels in plasma from control and streptozotocin-diabetic rats. Our results show that cNOS is predominant in control, while iNOS isoform is increased in the diabetic islets (P < 0.01). 15d-PGJ(2) 10(-5)M inhibits cNOS and iNOS activity both in control and diabetic islets (P < 0.05). Nitrate/nitrite and PGE(2) levels are higher in diabetic than in control islets (P < 0.05 and P < 0.01, respectively). 15d-PGJ(2) 10(-5)M decreases nitrate/nitrite and PGE(2) levels both in control and in diabetic islets. Bisphenol A diglycidyl ether (BADGE), a recently described PPARgamma antagonist, seems to act as a PPARgamma agonist, diminishing nitrate/nitrite and PGE2 levels in control and diabetic islets. 15d-PGJ(2) production is lower in islets from diabetic animals compared to control (P < 0.05). Our observations suggest that 15d-PGJ(2) is able to diminish the production of vasoactive proinflammatory agents in pancreatic islets. The diminished 15d-PGJ(2) levels in the diabetic islets are probably related to the diminished capacity to limit the inflammatory response due to experimental diabetes in the rat.
    Nitric Oxide 03/2002; 6(2):214-20. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oxidative stress in placental tissues during late pregnancy, as well as the relationship between reactive oxygen species (ROS) and the arachidonic acid (AA) pathway was evaluated in a neonatal streptozotocin (STZ)-induced diabetic rat model. Lipoperoxide levels are increased in diabetic tissues compared with control tissues (P<0.001) and they seem to increase throughout the development of gestation both in control (P<0.05) and STZ-induced diabetic (P<0.001) rats. Superoxide dismutase (SOD) activity is not modified on different days of pregnancy, but enzymatic activity is lower in diabetic tissues than in control tissues (P<0.01). Labour is preceded by an increase in placental 14C-prostaglandin conversion from 14C-AA in control and diabetic animals (P<0.05) and the thromboxane B2 (TXB2)/6-keto-prostaglandin F1alpha (PGF1alpha) ratio is higher in diabetic placental tissues than in controls. The addition of SOD and glutathione to the incubation medium does not modify prostanoid levels in control rats, but does decrease the AA conversion to PGF2alpha, PGE2 and TXB2 (P<0.05) in diabetic placenta. Superoxide radical generation (hypoxanthine/xanthine oxidase or hydrogen peroxide added to the incubation medium) produces a decrease in 6-keto-PGF1alpha (P<0.05) in control and diabetic tissues, whereas PGF2alpha, PGE2 and TXB2 levels, and PGF2alpha and TXB2 production are increased in control and diabetic animals respectively (P<0.05). Diabetic pregnant rats supplemented with a diet containing 400 mg day(-1) of alpha-tocopherol (vitamin E) have diminished placental PGF2alpha and TXB2 production and lipoperoxide levels. The results show a higher TXB2 and a decreased 6-keto-PGF1alpha placental production that may be linked to increased oxidative stress and to a reduced antioxidant capacity in STZ-induced diabetic rats. These imbalances, probably involved in abnormal placental structure and function, may potentially be corrected with dietary supplementation of alpha-tocopherol in diabetic pregnancies.
    Reproduction Fertility and Development 02/2002; 14(1-2):117-23. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin-1 (ET-1), a potent vasoconstrictor peptide and modulator of vasoactive substances such as prostanoids and nitric oxide (NO), plays an important role during embryo and fetal development. In this work, ET-1, nitrate and nitrite, and prostaglandin E2 (PGE2) levels in embryos from control and neonatal streptozotocin-induced (n-stz) diabetic rats were assessed, and the modulatory pathways regulating the generation of these vasoactive agents investigated. Endothelin-1 concentrations were found to be increased in embryos from n-stz diabetic rats when compared with controls. Additions of spermine NONOate, a nitric oxide donor, enhanced ET-1 levels in embryos from both control and n-stz diabetic rats, whereas N(G)-monomethyl-L-arginine, a nitric oxide inhibitor, diminished embryonic ET-1 content. Thus, enhanced ET-1 levels in the embryos from n-stz diabetic rats may be related to the elevated NO levels found in those embryos. Additions of ET-1 or bosentan (an endothelin A and endothelin B receptor antagonist), did not alter PGE2 generation in embryos from either control or n-stz diabetic rats. Endothelin-1 additions diminished nitrate and nitrite levels in embryos from both control and n-stz diabetic rats, whereas bosentan stimulated nitrate and nitrite generation in those embryos. In the present work, it was found that ET-1 levels were enhanced in embryos from n-stz diabetic rats, probably as a result of NO overproduction, an alteration which may be related to embryonic abnormalities and growth delay. Endothelin-1 has been shown to be a negative modulator of embryonic NO levels, a mechanism likely to be important during development. Endothelin-1 may prevent damage induced by NO overproduction in embryos from n-stz diabetic rats.
    Reproduction Fertility and Development 02/2002; 14(1-2):23-8. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs) are responsible for the remodelling of the uterine extracellular matrix during embryo implantation. Nitric oxide (NO) production is increased at the time when implantation begins. Abnormal tissue levels of MMPs are present in diabetes; elevated NO levels in tissues and an increased oxidative stress are also found. The present work evaluates the uterine MMP2 activity and levels during embryo implantation, as well as the influence of nitridergic compounds and reactive oxygen species (ROS) on the MMP2 enzymatic activity in a model of neonatal streptozotocin-induced diabetic rat. Metalloproteinase 2 activity and levels are increased in diabetic tissues compared with controls (P < 0.05 and P < 0.002 respectively). The uterine enzymatic activity in diabetic animals decreases in the presence of the NOS inhibitor NG-nitro-L-arginine methyl ester (P < 0.01) and is enhanced (P < 0.005) when a generating ROS system (xanthine/xanthine oxidase) is added to the incubating medium. It was also found that uterine superoxide dismutase activity is higher in diabetic rats than in control rats on the day of implantation (P < 0.001), suggesting a compensatory antioxidant ability. In conclusion, the results show that the uterine MMP2 activity, which is higher in diabetic animals than in control animals, is modulated positively by NO and ROS during embryo implantation in a model of streptozotocin-induced diabetic rats.
    Reproduction Fertility and Development 01/2002; 14(7-8):479-85. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptozotocin-induced pancreatic damage involves nitric oxide (NO) and prostaglandins (PGs) overproduction. In this work we aim to evaluate a putative relationship between the elevated NO levels and the altered prostanoid production in pancreatic tissue from streptozotocin-diabetic rats. Total NOS activity and nitrate/nitrite pancreatic levels in tissues from diabetic rats are decreased when the cyclooxygenase (COX) inhibitor indomethacin (INDO) is added to the incubating medium, while the addition of PGE(2)increases nitrate/nitrite production and NOS levels. INDO and PGE(2)selectively affect Ca(2+)-dependent NOS (iNOS) activity in diabetic tissues, and they have not been able to modify nitrate/nitrite levels, iNOS or Ca(2+)-dependent (cNOS) in control tissues. When the NOS inhibitor L-NMMA was present in the incubating medium, control pancreatic [(14)C]-Arachidonic Acid ([(14)C]-AA) conversion to 6-keto PGF(1 alpha)and to TXB(2)was lower, and PGF(2 alpha), PGE(2)and TXB(2)production from diabetic tissues diminished. The NO donors, spermine nonoate (SN) and SIN-1, enhanced TXB(2)levels in control tissues, while PGF(2 alpha), PGE(2)and TXB(2)levels from diabetic tissues were increased. PGE(2)production from control and diabetic tissues was assessed in the presence of the NO donor SN plus INDO or NS398, a specific PG synthase 2 inhibitor. When SN combined with INDO or NS398 was added, the increment of PGE(2)production was abolished by both inhibitors in equal amounts, indicating that the activating effect of nitric oxide is exerted on the inducible isoform of cyclooxygenase. In the diabetic rat, prostaglandins and NO seem to stimulate the generation of each other, suggesting a lack of regulatory mechanisms that control the levels of vasoactive substances in acute phase of beta-cell destruction.
    Prostaglandins Leukotrienes and Essential Fatty Acids 07/2001; 64(6):311-6. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work we assessed NO levels in the control and diabetic embryo during early organogenesis, and the ability of NO and SOD to modify embryonic PGE2 levels. Rats were made diabetic by steptozotocin (60 mg/kg) before mating. Diabetic embryos (day 10 of gestation) show increased nitrate/nitrite levels and enhanced NOS activity. The diabetic embryos release to the incubation medium increased amounts of PGE2 and have diminished PGE2 content. In the control embryo NO modulates PGE2 levels, but this modulatory pathway is not observed in the diabetic embryos. The diminished PGE2 content and the enhanced PGE2 release is prevented by SOD additions, both in the diabetic embryos and in control embryos cultured in the presence of diabetic serum (24 h culture, explantation day 9). The present results show that SOD additions prevent the abnormalities in the accumulation, production and release of PGE2 in diabetic embryos, probably related to the decrease in malformations.
    Prostaglandins Leukotrienes and Essential Fatty Acids 03/2001; 64(2):127-33. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The process of embryo implantation requires extensive remodelling of the endometrial extracellular matrix, a function largely performed by matrix-degrading metalloproteinases (MMPs). In the present study, we used trophoblast cells isolated from human term placentas to study the regulation of MMPs by nitric oxide (NO). Using a combination of zymography, Western blot and indirect immunofluorescence, we showed that MMP-2 and MMP-9 are increased during the conversion from low-motile cytotrophoblast cells to the highly motile and differentiated syncytiotrophoblast multinucleated cells. We also observed an increase in NO production and NO synthase (NOS) expression during this cellular differentiation process. In addition, we demonstrated a positive regulatory role of NO on the activity and protein expression of MMP-2 and MMP-9, because NO donors (NOC-18 and spermine-NONOate) or the NOS substrate (L-arginine) stimulate, whereas NOS inhibitors (N(G)-nitro-L-arginine methyl ester and N(G)-monomethyl-L-arginine) reduce the expression and gelatinolytic activity of MMP-2 and MMP-9 in isolated trophoblast cells. Taken together, these results suggest that, in differentiating trophoblasts, NO regulates the induction of matrix-degrading proteases required for invasion during embryo implantation.
    Reproduction Fertility and Development 02/2001; 13(5-6):411-20. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ)-induced pancreatic damage, which may involve nitric oxide (NO) production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) (1 U/ml) produced a decrease in nitrite levels (42%) and NO synthase (NOS) activity (50%) in diabetic but not in control samples. When NO production was blocked by N(G)-monomethyl-L-arginine (L-NMMA) (600 microM), SOD activity increased (15.21 +/- 1.23 vs 24.40 +/- 2.01 U/mg dry weight). The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 +/- 1.32). Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 +/- 0.02 vs 0.20 +/- 0.03 nmol/mg protein), and when L-NMMA blocked NOS activity in the incubating medium (0.28 +/- 0.05); spermine nonoate (100 microM) abolished the decrease in lipoperoxide level (0.70 +/- 0.02). We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.
    Brazilian Journal of Medical and Biological Research 12/2000; 33(11):1335-42. · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diminished PGE2 levels in diabetic embryos are related to the development of malformations, and thus the aim of the present study was to determine whether PGE2 levels are modified in rat embryos cultured in diabetic serum during organogenesis, and if PGE2 content and release, and 3H-PGE2 uptake and release, are altered in incubated diabetic embryos. Rats were made diabetic by steptozotocin (60 mg kg(-1)) before mating. Control rat embryos cultured for 24 h (explantation Day 9) in the presence of diabetic serum showed diminished PGE2 levels. When Day 10 diabetic embryos were incubated, embryo PGE2 levels were lower, but the PGE2 released to the incubation media was much higher than in controls. Uptake of 3H-PGE2 by diabetic embryos was initially enhanced (5-10 min), then reached similar levels to controls (20-100 min). Release of 3H-PGE2 previously incorporated during a 60-min incubation was greater in diabetic embryos than in controls. These results show diminished PGE2 content in both diabetic and normal embryos cultured in the presence of diabetic serum, but suggest that diabetic embryos have the capability to produce and release high levels of PGE2. The enhanced release of PGE2 is probably the result of transport abnormalities, and leads to the elevated PGE2 concentrations found in the incubating medium and to the diminished intraembryonic PGE2 levels that alter embryonic development.
    Reproduction Fertility and Development 02/2000; 12(3-4):141-7. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activity of matrix metalloproteinase (MMP)-9 was evaluated in placental tissue from healthy subjects (controls) and from patients with gestational and pre-existing diabetes mellitus (GDM and PDM, respectively). Compared with controls, MMP-9 activity was greater in placental tissue from patients with PDM and lower in placental tissue from patients with GDM. The modulatory role of nitric oxide (NO) and reactive oxygen species (ROS) on MMP-9 activity in placental tissue was evaluated. In healthy placenta, NO synthase inhibitors diminished MMP-9 activity, whereas NO donors enhanced it. The addition of xanthine/xanthine oxidase or hydrogen peroxide to placental incubates enhanced MMP-9 activity, while the addition of superoxide dismutase (SOD) diminished it. In placental tissue from patients with PDM, MMP-9 activity was stimulated by NO and by ROS. In placental tissue from patients with PDM, concentrations of nitrates/nitrites and thiobarbituric acid-reactive substances (TBARS) were enhanced, whereas SOD activity was decreased, suggesting that elevated concentrations of NO and ROS may be related to the enhanced MMP-9 concentrations found in these tissues. In placenta from GDM patients, in which a diminished concentration of MMP-9 were detected, nitrate/nitrite concentrations were increased, but placental MMP-9 activity did not change in the presence of either NO donors or inhibitors. The activity of MMP-9 in placental tissue from patients with GDM was stimulated by ROS donor systems and was inhibited by the addition of SOD; however, TBARS and SOD concentrations were unchanged in these tissues compared with controls. These findings demonstrate that placental MMP-9 activity is modulated by NO and ROS and that, in diabetic pathology, NO and ROS may determine changes in MMP-9 activity, which are probably involved in the structural and functional abnormalities of diabetic placental tissue.
    Reproduction Fertility and Development 02/2000; 12(5-6):269-75. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many lines of evidence indicate that an increased pancreatic production of nitric oxide (NO) and prostaglandins (PGs) is found in the pancreas of streptozotocin-diabetic rats and that endothelins (ETs) are closely related to the nitridergic and prostanoid pathway in several tissues. In the present study the relationship between NO, ETs, and PGs has been explored in isolated pancreatic tissue from streptozotocin-diabetic rats. Pancreatic ET levels are higher in pancreatic tissues from diabetic (D) rats compared to control (C) animals. The addition of nitric oxide synthase (NOS) inhibitors (1 mM NG-nitro--arginine methyl ester, 600 μM NG-monomethyl--arginine) in the incubating medium reduces and NO donors (SIN-1, 300 μM spermine supress, NONOate 100 μM) increases ET levels in pancreatic slices from C and D animals. PGE2 (10−7 M) increases and indomethacin (10−6 M) decreases ET pancreatic production only in D but not in C tissues when added into the incubating bath. When tissues are incubated in the presence of endothelin 1 (ET-1) (10−7 M), NOS activity is higher in C pancreas, while the ET-receptor antagonist bosentan (B) decreases NOS levels in D but not in C tissues. When pancreatic arachidonic acid (AA) conversion to prostaglandins was explored, ET-1 increased PGF2α, PGE2, and TXB2 levels in C but not in D tissues. B abolishes TXB2 increment due to the diabetic state, but failed in modulating AA conversion to 6-keto PGF1α, PGF2α and PGE2 in D pancreas. Our results show an alteration in AA metabolism, ET production, and NO increment associated with pancreatic damage due to streptozotocin.
    Nitric Oxide 01/2000; · 3.27 Impact Factor

Publication Stats

263 Citations
57.91 Total Impact Points

Institutions

  • 2006–2007
    • University of Buenos Aires
      • Department of Medicine
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2000–2004
    • National Scientific and Technical Research Council
      • CEFYBO - Centro de Estudios Farmacológicos y Botánicos
      Mendoza, Provincia de Mendoza, Argentina
  • 2003
    • Lawrence Berkeley National Laboratory
      • Life Sciences Division
      Berkeley, CA, United States