Publications (1)4.78 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While Kras/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin are critical for lung morphogenesis, mechanisms integrating these important signaling pathways during lung development are unknown. Herein, we demonstrate that the Foxm1 transcription factor is a key downstream target of activated KrasG12D. Deletion of Foxm1 from respiratory epithelial cells during lung formation prevented structural abnormalities caused by activated KrasG12D. Kras/Foxm1 signaling inhibited the activity of canonical Wnt signaling in the developing lung in vivo. Foxm1 decreased T-cell factor (TCF) transcriptional activity induced by activated β-catenin in vitro. Depletion of Foxm1 by short interfering RNA (siRNA) increased nuclear localization of β-catenin, increased expression of β-catenin target genes, and decreased mRNA and protein levels of the β-catenin inhibitor Axin2. Axin2 mRNA was reduced in distal lung epithelium of Foxm1-deficient mice. Foxm1 directly bound to and increased transcriptional activity of the Axin2 promoter region. Foxm1 is required for Kras signaling in distal lung epithelium and provides a mechanism integrating Kras and canonical Wnt/β-catenin signaling during lung development.
    Molecular and Cellular Biology 07/2012; 32(19):3838-50. DOI:10.1128/MCB.00355-12 · 4.78 Impact Factor