Zane Kraft

Seattle BioMed, Seattle, Washington, United States

Are you Zane Kraft?

Claim your profile

Publications (22)107.92 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 1% of those infected with HIV-1 develop broad and potent serum cross-neutralizing antibody activities. It is unknown whether or not the development of such immune responses affects the replication of the contemporaneous autologous virus. Here, we defined a pathway of autologous viral escape from contemporaneous potent and broad serum neutralizing antibodies developed by an elite HIV-1+ neutralizer. These antibodies potently neutralize diverse isolates from different clades and primarily target the CD4-binding site of the viral envelope glycoprotein. Viral escape required mutations in the viral envelope glycoprotein which limited the accessibility of the CD4-binding site to the autologous broadly neutralizing anti-CD4-BS antibodies, but which allowed the virus to infect cells by utilizing CD4 receptors on their surface. The acquisition however of neutralization-resistance resulted in reduced cell-entry potentials and slower viral replication kinetics. Our results indicate that in vivo escape from autologous broadly neutralizing antibodies exacts fitness costs to HIV-1.
    Journal of Virology 09/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two to three years after infection, a fraction of HIV-1–infected individuals develop serologic activity that neutralizes most viral isolates. Broadly neutralizing antibodies that recognize the HIV-1 envelope protein have been isolated from these patients by single-cell sorting and by neutralization screens. Here, we report a new method for anti–HIV-1 antibody isolation based on capturing single B cells that recognize the HIV-1 envelope protein expressed on the surface of transfected cells. Although far less efficient than soluble protein baits, the cell-based capture method identified antibodies that bind to a new broadly neutralizing epitope in the vicinity of the V3 loop and the CD4-induced site (CD4i). The new epitope is expressed on the cell surface form of the HIV-1 spike, but not on soluble forms of the same envelope protein. Moreover, the new antibodies complement the neutralization spectrum of potent broadly neutralizing anti-CD4 binding site (CD4bs) antibodies obtained from the same individual. Thus, combinations of potent broadly neutralizing antibodies with complementary activity can account for the breadth and potency of naturally arising anti–HIV-1 serologic activity. Therefore, vaccines aimed at eliciting anti–HIV-1 serologic breadth and potency should not be limited to single epitopes.
    Journal of Experimental Medicine 07/2012; 209(8):1469-1479. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.
    PLoS ONE 01/2012; 7(7):e41832. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.
    Journal of Virology 01/2012; 86(1):128-42. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article on p. e41832 in vol. 7.].
    PLoS ONE 01/2012; 7(10). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PG9 and PG16 are antibodies isolated from a subject infected with HIV-1 and display broad anti-HIV neutralizing activities. They recognize overlapping epitopes, which are preferentially expressed on the membrane-anchored trimeric form of the HIV envelope glycoprotein (Env). PG9 and PG16 were reported not to bind to soluble mimetics of Env. The engineering of soluble Env proteins on which the PG9 and PG16 epitopes are optimally exposed will support efforts to elicit broad anti-HIV neutralizing antibodies by immunization. Here, we identified several soluble gp140 Env proteins that are recognized by PG9 and PG16, and we investigated the molecular details of those binding interactions. The IgG versions of PG9 and PG16 recognize the soluble trimeric gp140 form less efficiently than the corresponding monomeric gp140 form. In contrast, the Fab versions of PG9 and PG16 recognized the monomeric and trimeric gp140 forms with identical binding kinetics and with binding affinities similar to the high binding affinity of the anti-V3 antibody 447D to its epitope. Our data also indicate that, depending on the Env backbone, the interactions of PG9 and PG16 with gp140 may be facilitated by the presence of the gp41 ectodomain and are independent of the proper enzymatic cleavage of gp140 into gp120 and gp41. The identification of soluble Env proteins that express the PG9 and PG16 epitopes and the detailed characterization of the molecular interactions between these two antibodies and their ligands provide important and novel information that will assist in improving the engineering of future Env immunogens.
    Journal of Virology 07/2011; 85(14):7095-107. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is the design of Envelope (Env)-based immunogens effective at eliciting heterologous or broad neutralizing antibodies (NAbs). We hypothesized that programming the B-cell response could be achieved by sequentially exposing the host to a collection of env variants representing the viral quasispecies members isolated from an individual that developed broad NAbs over time. This ordered vaccine approach (sequential) was compared to exposure to a cocktail of env clones (mixture) and to a single env variant (clonal). The three strategies induced comparable levels of the autologous and heterologous neutralization of tier 1 pseudoviruses. Sequential and mixture exposure to quasispecies led to epitope targeting similar to that observed in the simian-human immunodeficiency virus (SHIV)-infected animal from which the env variants were cloned, while clonal and sequential exposure led to greater antibody maturation than the mixture. Therefore, the sequential vaccine approach best replicated the features of the NAb response observed in that animal. This study is the first to explore the use of a collection of HIV-1 env quasispecies variants as immunogens and to present evidence that it is possible to educate the B-cell response by sequential exposure to native HIV-1 quasispecies env variants derived from an individual with a broadened NAb response.
    Journal of Virology 03/2011; 85(11):5262-74. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly cross-reactive monoclonal antibodies define epitopes for vaccine development against HIV and other highly mutable viruses. Crystal structures are available for several such antibody-epitope complexes, but methods are needed to translate that structural information into immunogens that re-elicit similar antibodies. We describe a general computational method to design epitope-scaffolds in which contiguous structural epitopes are transplanted to scaffold proteins for conformational stabilization and immune presentation. Epitope-scaffolds designed for the poorly immunogenic but conserved HIV epitope 4E10 exhibited high epitope structural mimicry, bound with higher affinities to monoclonal antibody (mAb) 4E10 than the cognate peptide, and inhibited HIV neutralization by HIV+ sera. Rabbit immunization with an epitope-scaffold induced antibodies with structural specificity highly similar to mAb 4E10, an important advance toward elicitation of neutralizing activity. The results demonstrate that computationally designed epitope-scaffolds are valuable as structure-specific serological reagents and as immunogens to elicit antibodies with predetermined structural specificity.
    Structure 09/2010; 18(9):1116-26. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (MAbs) that neutralize human immunodeficiency virus type 1 (HIV-1) have been isolated from HIV-1-infected individuals or animals immunized with recombinant HIV-1 envelope (Env) glycoprotein constructs. The epitopes of these neutralizing antibodies (NAbs) were shown to be located on either the variable or conserved regions of the HIV-1 Env and to be linear or conformational. However, one neutralizing MAb, 2909, which was isolated from an HIV-1-infected subject, recognizes a more complex, quaternary epitope that is present on the virion-associated functional trimeric Env spike of the SF162 HIV-1 isolate. Here, we discuss the isolation of 11 anti-HIV NAbs that were isolated from three rhesus macaques infected with the simian/human immunodeficiency virus SHIV(SF162P4) and that also recognize quaternary epitopes. A detailed epitope mapping analysis of three of these rhesus antibodies revealed that their epitopes overlap that of the human MAb 2909. Despite this overall similarity in binding, however, differences in specific amino acid and glycosylation pattern requirements for MAb 2909 and the rhesus MAbs were identified. These results highlight similarities in the B-cell responses of humans and macaques to structurally complex neutralization epitopes on related viruses, HIV-1 and SHIV.
    Journal of Virology 04/2010; 84(7):3443-53. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human 4E10 is one of the broadest-specificity, HIV-1-neutralizing monoclonal antibodies known, recognizing a membrane-proximal linear epitope on gp41. The lipid cross-reactivity of 4E10 has been alternately suggested either to contribute to the apparent rarity of 4E10-like antibody responses in HIV infections, through elimination by B-cell tolerance mechanisms to self-antigens, or to contribute to neutralization potency by virus-specific membrane binding outside of the membrane-proximal external region (MPER). To investigate how 4E10 interacts with membrane and protein components, and whether such interactions contribute to neutralization mechanisms, we introduced two mutations into 4E10 Fv constructs, Trp to Ala at position 100 in the heavy chain [W(H100)A] and Gly to Glu at position 50 in the light chain [G(L50)E], selected to disrupt potential lipid interactions via different mechanisms. Wild-type and mutant Fvs all bound with the same affinity to peptides and monomeric and trimeric gp140s, but the affinities for gp140s were uniformly 10-fold weaker than to peptides. 4E10 Fv binding responses to liposomes in the presence or absence of MPER peptides were weak in absolute terms, consistent with prior observations, and both mutations attenuated interactions even further, as predicted. The W(H100)A mutation reduced neutralization efficiency against four HIV-1 isolates, but the G(L50)E mutation increased potency across the same panel. Electron paramagnetic resonance experiments showed that the W(H100)A mutation, but not the G(L50)E mutation, reduced the ability of 4E10 to extract MPER peptides from membranes. These results show that 4E10 nonspecific membrane binding is separable from neutralization, which is achieved through specific peptide/lipid orientation changes.
    Journal of Virology 11/2009; 84(2):1076-88. · 5.08 Impact Factor
  • Source
    Retrovirology 01/2009; · 5.66 Impact Factor
  • Source
    Retrovirology 01/2009; · 5.66 Impact Factor
  • Source
    Retrovirology 01/2009; · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential pathogenicity has been observed in cynomolgus and rhesus macaques following primate lentivirus infection. However, little is known about the comparative susceptibility of pig-tailed macaques to lentivirus infection and diseases. We compared the in vivo infectivity and pathogenicity of a CCR5-tropic SHIV(SF162 P4) after intravenous, intravaginal or intrarectal inoculation in rhesus and pig-tailed macaques. Plasma viral load, peripheral blood CD4(+) T cell counts and clinical signs were monitored. Both rhesus and pig-tailed macaques are similarly susceptible to SHIV(SF162 P4) infection by intravenous and mucosal routes. However, infection was significantly more robust in pig-tailed macaques than in rhesus, resulting in persistent viremia in 9/21 pig-tails vs. 2/24 rhesus (P < 0.013) and severe CD4(+) T-cell depletion in 2/21 pig-tails (vs. none in rhesus). Together with earlier observations, our findings underscore the importance of considering host genetic and immunological factors when comparing vaccine efficacy in different macaque species.
    Journal of Medical Primatology 12/2008; 37 Suppl 2:13-23. · 1.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against "easy-to-neutralize" clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.
    Journal of Virology 07/2008; 82(12):5912-21. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eleven anti-HIV Env monoclonal antibodies (MAbs) were isolated from mice immunized with soluble Env proteins derived from the clade B Env, SF162, or DeltaV2 (a derivative of SF162 lacking the V2 loop). All six anti-gp120 MAbs studied, neutralized SF162 and their activities were dependent by the glycosylation patterns of the V1, V2 or V3 loops. Only one anti-gp120 MAb (an anti-V3 MAb) displayed cross-neutralizing activity, which was influenced by the type of V1 loop present on the target heterologous viruses. None of the five anti-gp41 MAbs studied displayed anti-SF162 neutralizing activity. Our studies indicate that the current limitation of soluble HIV Env gp140 immunogens to elicit robust cross-reactive neutralizing antibody responses is not only due to the elicitation of high titers of homologous antibodies but also due to the elicitation of antibodies whose epitopes are naturally occluded, or not present, on the virion-associated Env.
    Virology 10/2007; 366(2):433-45. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.
    Journal of Virology 06/2007; 81(12):6402-11. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macaques were immunized with SF162 Env-based gp140 immunogens and challenged simultaneously with the CCR5-tropic homologous SHIV(SF162P4) and the CXCR4-tropic heterologous SHIV(SF33A) viruses. Both mock-immunized and immunized animals became dually infected. Prior immunization preferentially reduced the viral replication of the homologous virus during primary infection but the relative replication of the two coinfecting viruses during chronic infection was unaffected by prior immunization, despite the fact that five of six immunized animals maintained a significantly lower overall viral replication that the control animals. Neutralizing antibodies participated in controlling the replication of SHIV(SF162P4), but not that of SHIV(SF33A). Dual infection resulted in the emergence and predominance within the circulating CCR5 virus pool, of a variant with a distinct neutralization phenotype. The signature of this variant was the presence of three amino acid changes in gp120, two of which were located in the receptor and coreceptor binding sites. Also, a significant fraction of the viruses circulating in the blood, as early as two weeks post-infection, was recombinants and prior immunization did not prevent their emergence. These findings provide new insights into the dynamic interaction of CCR5- and CXCR4-tropic HIV isolates that are potentially relevant in better understanding HIV-mediated pathogenesis.
    Virology 12/2006; 355(2):138-51. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, macaques were coimmunized with VEErep/SINenv chimeric alphavirus replicon particles expressing SIVp55Gag and HIVDeltaV2gp140Env or only with replicon particles expressing HIVDeltaV2gp140Env. All animals were subsequently immunized with recombinant trimeric HIVDeltaV2gp140Env protein. During alphavirus immunization, anti-SIVGag and anti-HIVEnv-specific interferon (IFN)-gamma responses, as well as high titers of anti-HIVEnv binding (gp120 but not gp41 specific) and anti-HIV neutralizing antibodies, were generated. The subsequent immunization with recombinant HIVDeltaV2gp140 enhanced the neutralizing antibody titers and Env-specific IFN-gamma responses. Following intravenous challenge with the R5- tropic SHIV(SF162P4) virus, significantly lower primary plasma viremia levels were recorded in the immunized animals, as compared to control animals immunized with replicon particles expressing influenza virus HA. Our results show that this method of immunization elicits both strong cellular immunity and neutralizing antibodies in primates and, thus, merits further investigation.
    AIDS Research and Human Retroviruses 11/2006; 22(10):1022-30. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.
    Journal of Virology 10/2006; 80(17):8745-62. · 5.08 Impact Factor

Publication Stats

498 Citations
107.92 Total Impact Points

Institutions

  • 2012
    • Seattle BioMed
      Seattle, Washington, United States
  • 2005–2012
    • Seattle Institute for Biomedical and Clinical Research
      Seattle, Washington, United States
  • 2010
    • Tulane University
      • Department of Pediatrics
      New Orleans, LA, United States