A. Palacios

Université Montpellier 2 Sciences et Techniques, Montpelhièr, Languedoc-Roussillon, France

Are you A. Palacios?

Claim your profile

Publications (59)113.82 Total impact

  • Source
    A. S. Brun, A Palacios
    [Show abstract] [Hide abstract]
    ABSTRACT: With the development of one-dimensional stellar evolution codes including rotation and the increasing number of observational data for stars of various evolutionary stages, it becomes more and more possible to follow the evolution of the rotation profile and angular momentum distribution in stars. In this context, understanding the interplay between rotation and convection in the very extended envelopes of giant stars is very important considering that all low-and intermediate-mass stars become red giants after the central hydrogen burning phase. In this paper, we analyze the interplay between rotation and convection in the envelope of red giant stars using three-dimensional numerical experiments. We make use of the Anelastic Spherical Harmonics code to simulate the inner 50% of the envelope of a low-mass star on the red giant branch. We discuss the organization and dynamics of convection, and put a special emphasis on the distribution of angular momentum in such a rotating extended envelope. To do so, we explore two directions of the parameter space, namely, the bulk rotation rate and the Reynolds number with a series of four simulations. We find that turbulent convection in red giant stars is dynamically rich, and that it is particularly sensitive to the rotation rate of the star. Reynolds stresses and meridional circulation establish various differential rotation profiles (either cylindrical or shellular) depending on the convective Rossby number of the simulations, but they all agree that the radial shear is large. Temperature fluctuations are found to be large and in the slowly rotating cases, a dominant = 1 temperature dipole influences the convective motions. Both baroclinic effects and turbulent advection are strong in all cases and mostly oppose one another.
    The Astrophysical Journal 03/2016; 702(2):1078-1097. DOI:10.1088/0004-637X/702/2/1078 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.
    Astronomy and Astrophysics 04/2015; DOI:10.1051/0004-6361/201526130 · 4.48 Impact Factor
  • F. Martins, A. Palacios
    [Show abstract] [Hide abstract]
    ABSTRACT: Tables of evolutionary models for massive stars. The files m*_stol.dat correspond to models computed with the code STAREVOL. The files m*_mesa.dat correspond to models computed with the code MESA. For each code, models with initial masses equal to 7, 9, 15, 20, 25, 40 and 60Mȯ are provided. No rotation is included. The overshooting parameter f is equal to 0.01. The metallicity is solar. (14 data files).
  • L. Cambresy, F. Martins, E. Nuss, A. Palacios
  • [Show abstract] [Hide abstract]
    ABSTRACT: In stellar interior rotation profile can be changed by stellar contraction, meridional circulation, shear turbulence and internal gravity waves. These waves are generated at the edge of the convective zones and propagate inside the radiative zone where they damped by thermal diffusivity and viscosity in corotation resonance. The differential damping between prograde and retrograde let its imprint on the rotation profile along with other hydrodynamic transport processes. This interplay will be discussed for low-mass stars along the PMS.
  • Source
    F. Martins, A. Palacios
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we compare the currently available evolutionary tracks for Galactic massive stars. Our main goal is to highlight the uncertainties on the predicted evolutionary paths. We compute stellar evolution models with the codes MESA and STAREVOL. We compare our results with those of four published grids of massive stellar evolution models (Geneva, STERN, Padova and FRANEC codes). We first investigate the effects of overshooting, mass loss, metallicity, chemical composition. We subsequently focus on rotation. Finally, we compare the predictions of published evolutionary models with the observed properties of a large sample of Galactic stars. We find that all models agree well for the main sequence evolution. Large differences in luminosity and temperatures appear for the post main sequence evolution, especially in the cool part of the HR diagram. Depending on the physical ingredients, tracks of different initial masses can overlap, rendering any mass estimate doubtful. For masses between 7 and 20 Msun, we find that the main sequence width is slightly too narrow in the Geneva models including rotation. It is (much) too wide for the (STERN) FRANEC models. This conclusion is reached from the investigation of the HR diagram and from the evolution of the surface velocity as a function of surface gravity. An overshooting parameter alpha between 0.1 and 0.2 in models with rotation is preferred to reproduce the main sequence width. Determinations of surface abundances of carbon and nitrogen are partly inconsistent and cannot be used at present to discriminate between the predictions of published tracks. For stars with initial masses larger than about 60 Msun, the FRANEC models with rotation can reproduce the observations of luminous O supergiants and WNh stars, while the Geneva models remain too hot.
    Astronomy and Astrophysics 10/2013; 560. DOI:10.1051/0004-6361/201322480 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the impact of internal gravity waves (IGW), meridional circulation, shear turbulence, and stellar contraction on the internal rotation profile and surface velocity evolution of solar metallicity low-mass pre-main sequence stars. We compute a grid of rotating stellar evolution models with masses between 0.6 and 2.0Msun taking these processes into account for the transport of angular momentum, as soon as the radiative core appears and assuming no more disk-locking from that moment on.IGW generation along the PMS is computed taking Reynolds-stress and buoyancy into account in the bulk of the stellar convective envelope and convective core (when present). Redistribution of angular momentum within the radiative layers accounts for damping of prograde and retrograde IGW by thermal diffusivity and viscosity in corotation resonance. Over the whole mass range considered, IGW are found to be efficiently generated by the convective envelope and to slow down the stellar core early on the PMS. In stars more massive than ~ 1.6Msun, IGW produced by the convective core also contribute to angular momentum redistribution close to the ZAMS. Overall, IGW are found to significantly change the internal rotation profile of PMS low-mass stars.
    Astronomy and Astrophysics 04/2013; 554. DOI:10.1051/0004-6361/201321277 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermohaline mixing has been recently identified as the probable dominating process that governs the photospheric composition of low-mass bright red giant stars. Here, we present the predictions of stellar models computed with the code STAREVOL including this process together with rotational mixing. We compare our theoretical predictions with recent observations, and discuss the effects of both mechanisms on asteroseismic diagnostics.
    The European Physical Journal Conferences 03/2013; 43:01006-. DOI:10.1051/epjconf/20134301006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Aims: Our aim is to obtain seismic constraints on the internal transport and surface loss of the angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. Methods: We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3 M⊙ models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. Results: We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Conclusions: Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.
    Astronomy and Astrophysics 01/2013; 549:74. DOI:10.1051/0004-6361/201220211 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present - through a demo - the VOSPECFLOW application that intends to make easier - with the use of protocols from the Virtual Observatory - the comparison between observed stellar spectra (stored in the TBLegacy archive) and high resolution synthetic spectra (stored in the POLLUX database).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Our aim is to obtain seismic constraints on the internal transport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of $1.3 M_{\odot}$ models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Grid of stellar models and asymptotic asteroseismic quantities for four metallicities (Z= 0.0001, 0.002, 0.004, and 0.014) in the mass range from 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid, we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relation (microHz)s, the frequency corresponding to the maximum oscillation power νmax, the maximal amplitude Amax, the asymptotic period spacing of g-modes, and different acoustic radii. (4 data files).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.
    Astronomy and Astrophysics 04/2012; 543. DOI:10.1051/0004-6361/201118331 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Weak G-band (WGB) stars are a rare class of cool luminous stars that present a strong depletion in carbon, but also lithium abundance anomalies that have been little explored in the literature since the first discovery of these peculiar objects in the early 50's. Here we focus on the Li-rich WGB stars and report on their evolutionary status. We explore different paths to propose a tentative explanation for the lithium anomaly. Using archive data, we derive the fundamental parameters of WGB (Teff, log g, log(L/Lsun)) using Hipparcos parallaxes and recent temperature scales. From the equivalent widths of Li resonance line at 6707 {\AA}, we uniformly derive the lithium abundances and apply when possible NLTE corrections following the procedure described by Lind et al. (2009). We also compute dedicated stellar evolution models in the mass range 3.0 to 4.5 Msun, exploring the effects of rotation-induced and thermohaline mixing. These models are used to locate the WGB stars in the H-R diagram and to explore the origin of the abundance anomalies. The location of WGB stars in the H-R diagram shows that these are intermediate mass stars of masses ranging from 3.0 to 4.5 Msun located at the clump, which implies a degeneracy of their evolutionary status between subgiant/red giant branch and core helium burning phases. The atmospheres of a large proportion of WGB stars (more than 50%) exhibit lithium abundances A(Li) \geq 1.4 dex similar to Li-rich K giants. The position of WGB stars along with the Li-rich K giants in the H-R diagram however indicates that both are well separated groups. The combined and tentatively consistent analysis of the abundance pattern for lithium, carbon and nitrogen of WGB stars seems to indicate that carbon underabundance could be decorrelated from the lithium and nitrogen overabundances.
    Astronomy and Astrophysics 12/2011; 538. DOI:10.1051/0004-6361/201117988 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. We present a spectroscopic analysis of a sample of evolved stars in M67 (turn-off, subgiant and giant stars) in order to bring observational constraints to evolutionary models taking into account non-standard transport processes. Methods. We determined the stellar parameters (Teff, log g, [Fe/H]), microturbulent and rotational velocities and, Lithium abundances (ALi) for 27 evolved stars of M67 with the spectral synthesis method based on MARCS model atmospheres. We also computed non-standard stellar evolution models, taking into account atomic diffusion and rotation-induced transport of angular momentum and chemicals that were compared with this set of homogeneous data. Results. The lithium abundances that we derive for the 27 stars in our sample follow a clear evolutionary pattern ranging from the turn-off to the Red Giant Branch. Our abundance determination confirms the well known decrease of lithium content for evolved stars. For the first time, we provide a consistent interpretation of both the surface rotation velocity and of the lithium abundance patterns observed in an homogeneous sample of TO and evolved stars of M67. We show that the lithium evolution is determined by the evolution of the angular momentum through rotation-induced mixing in low-mass stars, in particular for those with initial masses larger than 1.30 M_\odot at solar metallicity.
    Astronomy and Astrophysics 01/2011; 527. DOI:10.1051/0004-6361/201015015 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helioseismology puts strong constraints on the internal sound speed and on the rotation profile in the radiative zone. Young stars of solar type are more active and faster rotators than the Sun. So we begin to build models which include different rotation histories and compare the results with all the solar observations. The profiles of the rotation we get have interesting consequence for the introduction of magnetic field in the radiative zone. We discuss also the impact of mass loss deduced from measured flux of young stars. We deduce from these comparisons some quantitative effect of the dynamical processes (rotation, magnetic field and mass loss) of these early stages on the present sound speed and density. We show finally how we can improve our present knowledge of the radiative zone with PICARD and GOLFNG.
    Journal of Physics Conference Series 01/2011; 271(1). DOI:10.1088/1742-6596/271/1/012044
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using spectropolarimetric data acquired with the ESPaDOnS and NARVAL instruments at CFHT and at TBL, we present a detailed spectral synthesis analysis of HD 232 862, a field giant classified as a G8II star hosting a magnetic field. This star is the first lithium-rich field giant hosting a magnetic field. Stellar evolution models suggest that HD 232 862 should be a 1.5 to 2.0 M&sun; star at the bottom of the red giant branch. Its unsually high lithium content (A(Li) = 2.45 ± 0.25 dex) is even more puzzling and challenges our understanding of the evolution of this star.
    Proceedings of the International Astronomical Union 11/2010; 268:347-348. DOI:10.1017/S1743921310004412
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. Methods: We present the POLLUX database of synthetic stellar spectra. For objects with Teff
    Astronomy and Astrophysics 06/2010; 516. DOI:10.1051/0004-6361/200913932 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar activity and helioseismology show the limitation of the standard solar model and call for the inclusion of dynamical processes in both convective and radiative zones. We concentrate here on the radiative zone and first show the sensitivity of boron neutrinos to the microscopic physics included in solar models. We confront the neutrino predictions of the seismic model to all the detected neutrino fluxes. Then we compute new models of the Sun including a detailed transport of angular momentum and chemicals due to internal rotation that includes meridional circulation and shear induced turbulence. We use two stellar evolution codes: CESAM and STAREVOL to estimate the different terms. We follow three temporal evolutions of the internal rotation differing by their initial conditions: very slow, moderate and fast rotation, with magnetic braking at the arrival on the main sequence for the last two. We find that the meridional velocity in the present solar radiative zone is extremely small in comparison with those of the convective zone, smaller than 10^-6 cm/s instead of m/s. All models lead to a radial differential rotation profile but with a significantly different contrast. We compare these profiles to the presumed solar internal rotation and show that if meridional circulation and shear turbulence were the only mechanisms transporting angular momentum within the Sun, a rather slow rotation in the young Sun is favored. The transport by rotation slightly influence the sound speed profile but its potential impact on the chemicals in the transition region between radiation and convective zones. This work pushes us to pursue the inclusion of the other dynamical processes to better reproduce the present observable and to describe the young active Sun. We also need to get a better knowledge of solar gravity mode splittings to use their constraints. Comment: 39 pages, 9 figures, accepted in Astrophysical Journal
    The Astrophysical Journal 04/2010; DOI:10.1088/0004-637X/715/2/1539 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A description of the data (high resolution synthetic spectra and spectral energy distributions) in the POLLUX database is presented in the form of an ascii table providing parameters that can be queried (Teff, logg, code, metallicity) and giving the filename and URL where a fits file can be retrieved. (1 data file).

Publication Stats

518 Citations
113.82 Total Impact Points

Institutions

  • 2007–2013
    • Université Montpellier 2 Sciences et Techniques
      Montpelhièr, Languedoc-Roussillon, France
  • 2001–2013
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2010–2011
    • Université de Montpellier 1
      Montpelhièr, Languedoc-Roussillon, France
    • Cea Leti
      Grenoble, Rhône-Alpes, France
  • 2004–2005
    • Vrije Universiteit Brussel
      Bruxelles, Brussels Capital, Belgium
  • 2003–2005
    • Université Libre de Bruxelles
      • Institute of Astronomy and Astrophysics
      Bruxelles, Brussels Capital, Belgium