Susan K Service

University of Southern California, Los Angeles, CA, United States

Are you Susan K Service?

Claim your profile

Publications (66)611.8 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. Method: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. Results: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10-4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). Conclusions: Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.
    American Journal of Psychiatry 08/2014; · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), but its pathogenesis remains poorly understood. A focus on measuring multisystem quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that affect BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomical phenotypes that appear heritable and associated with severe BP (bipolar I disorder [BP-I]) and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN, SETTING, AND PARTICIPANTS Multigenerational pedigree study in 2 closely related, genetically isolated populations: the Central Valley of Costa Rica and Antioquia, Colombia. A total of 738 individuals, all from Central Valley of Costa Rica and Antioquia pedigrees, participated; among them, 181 have BP-I. MAIN OUTCOMES AND MEASURES Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging, and diffusion tensor imaging phenotypes. RESULTS Of 169 phenotypes investigated, 126 (75%) were significantly heritable and 53 (31%) were associated with BP-I. About one-quarter of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions as well as volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE To our knowledge, this is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I association within families that is consistent with expectations from case-control studies. Together, these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder.
    JAMA Psychiatry 02/2014; · 12.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have identified >500 common variants associated with quantitative metabolic traits, but in aggregate such variants explain at most 20-30% of the heritable component of population variation in these traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in >6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding sequence and 5' and 3' untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits (serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found significant gene-level evidence of association to non-synonymous variants with MAF<1%. Additionally, two potentially deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094, a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants.
    PLoS Genetics 01/2014; 10(1):e1004147. · 8.52 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
    Nature Genetics 10/2013; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.
    Nature Genetics 10/2013; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.
    ILAR journal / National Research Council, Institute of Laboratory Animal Resources 01/2013; 54(2):122-43. · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide single nucleotide polymorphism (SNP) data from > 8000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance.
    Evolution 10/2012; 66(10):3238-3251. · 4.86 Impact Factor
  • Source
    Stéphanie M van den Berg, Susan K Service
    [Show abstract] [Hide abstract]
    ABSTRACT: As data from sequencing studies in humans accumulate, rare genetic variants influencing liability to disease and disorders are expected to be identified. Three simulation studies show that characteristics and properties of diagnostic instruments interact with risk allele frequency to affect the power to detect a quantitative trait locus (QTL) based on a test score derived from symptom counts or questionnaire items. Clinical tests, that is, tests that show a positively skewed phenotypic sum score distribution in the general population, are optimal to find rare risk alleles of large effect. Tests that show a negatively skewed sum score distribution are optimal to find rare protective alleles of large effect. For alleles of small effect, tests with normally distributed item parameters give best power for a wide range of allele frequencies. The item-response theory framework can help understand why an existing measurement instrument has more power to detect risk alleles with either low or high frequency, or both kinds.
    Genetic Epidemiology 09/2012; · 4.02 Impact Factor
  • Sotirios Tetradis, Stuart C White, Susan K Service
    [Show abstract] [Hide abstract]
    ABSTRACT: ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Dental x-rays and risk of meningioma. Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Cancer 2012. Epub ahead of print. REVIEWERS: Sotirios Tetradis, DDS, PhD, Stuart C. White, DDS, PhD, Susan K. Service, MS PURPOSE/QUESTION: To examine whether there is an association between age at receipt or frequency of dental radiographs and intracranial meningioma SOURCE OF FUNDING: The National Institutes of Health (R01 grants CA109468, CA109461, CA109745, CA108473, and CA109475), the Brain Science Foundation (nonprofit), and the Meningioma Mommas (nonprofit) TYPE OF STUDY/DESIGN: Case-control study LEVEL OF EVIDENCE: Level 2: Limited-quality, patient-oriented evidence STRENGTH OF RECOMMENDATION GRADE: Not applicable.
    The journal of evidence-based dental practice 09/2012; 12(3):174-7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (P<5 × 10(-8)); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (P=1.85 × 10(-6)). A secondary analysis including an additional 211 cases and 285 controls from two closely related Latin American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (P=3.6 × 10(-7) for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder.Molecular Psychiatry advance online publication, 14 August 2012; doi:10.1038/mp.2012.69.
    Molecular psychiatry 08/2012; · 15.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) is unclear. Candidate gene studies have implicated genetic susceptibility loci within immune-related genes; however, these have not been reliably validated. Here, we employed genome-wide association (GWA) methods to discover novel genetic susceptibility loci associated with HAND, and validate susceptibility loci implicated in prior candidate gene studies. Data from 1,287 participants enrolled in the Multicenter AIDS Cohort Study between 1985 and 2010 were used. Genotyping was conducted with Illumina 1M, 1MDuo, or 550K platform. Linear mixed models determined subject-specific slopes for change over time in processing speed and executive functioning, considering all visits including baseline and the most recent study visit. Covariates modeled as fixed effects included: time since the first visit, depression severity, nadir CD4+ T-cell count, hepatitis C co-infection, substance use, and antiretroviral medication regimen. Prevalence of HIV-associated dementia (HAD) and neurocognitive impairment (NCI) was also examined as neurocognitive phenotypes in a case-control analysis. No genetic susceptibility loci were associated with decline in processing speed or executive functioning among almost 2.5 million single nucleotide polymorphisms (SNPs) directly genotyped or imputed. No association between the SNPs and HAD or NCI were found. Previously reported associations between specific genetic susceptibility loci, HIV-associated NCI, and HAD were not validated. In this first GWAS of HAND, no novel or previously identified genetic susceptibility loci were associated with any of the phenotypes examined. Due to the relatively small sample size, future collaborative efforts that incorporate this dataset may still yield important findings.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 05/2012; 159B(6):669-83. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-human primates provide genetic model systems biologically intermediate between humans and other mammalian model organisms. Populations of Caribbean vervet monkeys (Chlorocebus aethiops sabaeus) are genetically homogeneous and large enough to permit well-powered genetic mapping studies of quantitative traits relevant to human health, including expression quantitative trait loci (eQTL). Previous transcriptome-wide investigation in an extended vervet pedigree identified 29 heritable transcripts for which levels of expression in peripheral blood correlate strongly with expression levels in the brain. Quantitative trait linkage analysis using 261 microsatellite markers identified significant (n = 8) and suggestive (n = 4) linkages for 12 of these transcripts, including both cis- and trans-eQTL. Seven transcripts, located on different chromosomes, showed maximum linkage to markers in a single region of vervet chromosome 9; this observation suggests the possibility of a master trans-regulator locus in this region. For one cis-eQTL (at B3GALTL, beta-1,3-glucosyltransferase), we conducted follow-up single nucleotide polymorphism genotyping and fine-scale association analysis in a sample of unrelated Caribbean vervets, localizing this eQTL to a region of <200 kb. These results suggest the value of pedigree and population samples of the Caribbean vervet for linkage and association mapping studies of quantitative traits. The imminent whole genome sequencing of many of these vervet samples will enhance the power of such investigations by providing a comprehensive catalog of genetic variation.
    Human Molecular Genetics 05/2012; 21(15):3307-16. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Temperament has a strongly heritable component, yet multiple independent genome-wide studies have failed to identify significant genetic associations. We have assembled the largest sample to date of persons with genome-wide genotype data, who have been assessed with Cloninger's Temperament and Character Inventory. Sum scores for novelty seeking, harm avoidance, reward dependence and persistence have been measured in over 11,000 persons collected in four different cohorts. Our study had >80% power to identify genome-wide significant loci (P<1.25 × 10(-8), with correction for testing four scales) accounting for ≥0.4% of the phenotypic variance in temperament scales. Using meta-analysis techniques, gene-based tests and pathway analysis we have tested over 1.2 million single-nucleotide polymorphisms (SNPs) for association to each of the four temperament dimensions. We did not discover any SNPs, genes, or pathways to be significantly related to the four temperament dimensions, after correcting for multiple testing. Less than 1% of the variability in any temperament dimension appears to be accounted for by a risk score derived from the SNPs showing strongest association to the temperament dimensions. Elucidation of genetic loci significantly influencing temperament and personality will require potentially very large samples, and/or a more refined phenotype. Item response theory methodology may be a way to incorporate data from cohorts assessed with multiple personality instruments, and might be a method by which a large sample of a more refined phenotype could be acquired.
    Translational psychiatry. 02/2012; 2:e116.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigation of the environmental influences on human behavioral phenotypes is important for our understanding of the causation of psychiatric disorders. However, there are complexities associated with the assessment of environmental influences on behavior. We conducted a series of analyses using a prospective, longitudinal study of a nationally representative birth cohort from Finland (the Northern Finland 1966 Birth Cohort). Participants included a total of 3,761 male and female cohort members who were living in Finland at the age of 16 years and who had complete temperament scores. Our initial analyses (Wessman et al., in press) provide evidence in support of four stable and robust temperament clusters. Using these temperament clusters, as well as independent temperament dimensions for comparison, we conducted a data-driven analysis to assess the influence of a broad set of life course measures, assessed pre-natally, in infancy, and during adolescence, on adult temperament. Measures of early environment, neurobehavioral development, and adolescent behavior significantly predict adult temperament, classified by both cluster membership and temperament dimensions. Specifically, our results suggest that a relatively consistent set of life course measures are associated with adult temperament profiles, including maternal education, characteristics of the family's location and residence, adolescent academic performance, and adolescent smoking. Our finding that a consistent set of life course measures predict temperament clusters indicate that these clusters represent distinct developmental temperament trajectories and that information about a subset of life course measures has implications for adult health outcomes.
    PLoS ONE 01/2012; 7(7):e38065. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The object of this study was to identify temperament patterns in the Finnish population, and to determine the relationship between these profiles and life habits, socioeconomic status, and health. A cluster analysis of the Temperament and Character Inventory subscales was performed on 3,761 individuals from the Northern Finland Birth Cohort 1966 and replicated on 2,097 individuals from the Cardiovascular Risk in Young Finns study. Clusters were formed using the k-means method and their relationship with 115 variables from the areas of life habits, socioeconomic status and health was examined. Four clusters were identified for both genders. Individuals from Cluster I are characterized by high persistence, low extravagance and disorderliness. They have healthy life habits, and lowest scores in most of the measures for psychiatric disorders. Cluster II individuals are characterized by low harm avoidance and high novelty seeking. They report the best physical capacity and highest level of income, but also high rate of divorce, smoking, and alcohol consumption. Individuals from Cluster III are not characterized by any extreme characteristic. Individuals from Cluster IV are characterized by high levels of harm avoidance, low levels of exploratory excitability and attachment, and score the lowest in most measures of health and well-being. This study shows that the temperament subscales do not distribute randomly but have an endogenous structure, and that these patterns have strong associations to health, life events, and well-being.
    PLoS ONE 01/2012; 7(7):e33088. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotype mining is a novel approach for elucidating the genetic basis of complex phenotypic variation. It involves a search of rich phenotype databases for measures correlated with genetic variation, as identified in genome-wide genotyping or sequencing studies. An initial implementation of phenotype mining in a prospective unselected population cohort, the Northern Finland 1966 Birth Cohort (NFBC1966), identifies neurodevelopment-related traits-intellectual deficits, poor school performance and hearing abnormalities-which are more frequent among individuals with large (>500 kb) deletions than among other cohort members. Observation of extensive shared single nucleotide polymorphism haplotypes around deletions suggests an opportunity to expand phenotype mining from cohort samples to the populations from which they derive.
    Human Molecular Genetics 07/2011; 20(13):2686-95. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetry is a prominent feature of human brains with important functional consequences. Many asymmetric traits show population bias, but little is known about the genetic and environmental sources contributing to inter-individual variance. Anatomic asymmetry has been observed in Old World monkeys, but the evidence for the direction and extent of asymmetry is equivocal and only one study has estimated the genetic contributions to inter-individual variance. In this study we characterize a range of qualitative and quantitative asymmetry measures in structural brain MRIs acquired from an extended pedigree of Old World vervet monkeys (n = 357), and implement variance component methods to estimate the proportion of trait variance attributable to genetic and environmental sources. Four of six asymmetry measures show pedigree-level bias and one of the traits has a significant heritability estimate of about 30%. We also found that environmental variables more significantly influence the width of the right compared to the left prefrontal lobe.
    PLoS ONE 01/2011; 6(12):e28243. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.
    Nature Genetics 03/2010; 42(4):348-54. · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tourette syndrome (TS) is a neuropsychiatric disorder characterized by multiple motor and phonic tics. The heritability of TS has been well established, yet there is a lack of consensus in genome-wide linkage studies. The purpose of this study was to conduct a genome-wide linkage analysis on a unique, large, high-risk TS Utah pedigree. We examined a qualitative trait (TS1) where cases had a definitive diagnosis of TS as observed by a clinical interviewer (n = 66) and a quantitative phenotype based on the total Yale global motor and phonic tic severity scores (n = 102). Both parametric and non-parametric multipoint linkage analyses based on MCMC methods were performed using a 10 cM spaced micro-satellite autosomal marker set. Two regions of interest were identified under affecteds-only recessive models; a LOD score of 3.3 on chromosome 1p for Yale tic severity and a LOD score of 3.1 on chromosome 3p for the TS1 phenotype. Twenty-seven individuals shared linked segregating haplotypes for the 1p region. They had significantly higher Yale tic phonic scores than non-sharers (P = 0.01). There were 46 haplotype sharers on chromosome 3p with significantly higher percentage of females among these individuals compared to the non-sharers (P = 0.03). The significant linkage peaks on chromosomes 1p and 3p are in new areas of the genome for TS, and replication of these findings is necessary.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 01/2010; 153B(2):656-62. · 3.23 Impact Factor

Publication Stats

2k Citations
611.80 Total Impact Points

Institutions

  • 2012
    • University of Southern California
      • Department of Neurology
      Los Angeles, CA, United States
    • Universiteit Twente
      Enschede, Overijssel, Netherlands
  • 2000–2012
    • University of California, Los Angeles
      • • Institute for Neuroscience and Human Behavior
      • • Department of Statistics
      • • Department of Human Genetics
      Los Angeles, CA, United States
  • 2011
    • University of Helsinki
      • Department of Medical Genetics
      Helsinki, Province of Southern Finland, Finland
  • 2004
    • University of California, San Diego
      • Department of Psychiatry
      San Diego, CA, United States
  • 2002
    • San Francisco VA Medical Center
      San Francisco, California, United States
    • University of Texas Health Science Center at San Antonio
      • Department of Psychiatry
      San Antonio, TX, United States
  • 1998–2002
    • University of California, San Francisco
      • Department of Psychiatry
      San Francisco, CA, United States
  • 2001
    • University of California, Berkeley
      • Department of Integrative Biology
      Berkeley, MO, United States
  • 1999
    • Medical Neurogenetics
      Atlanta, Georgia, United States