Ira Tabas

Harvard Medical School, Boston, Massachusetts, United States

Are you Ira Tabas?

Claim your profile

Publications (125)1327.51 Total impact

  • Source
    Lale Ozcan, Ira Tabas
    Aging 06/2014; · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis of acute coronary syndromes. Moreover, inflammatory pathways not only regulate the properties of plaques that precipitate acute coronary syndromes but also modulate the clinical consequences of the thrombotic complications of atherosclerosis. This synthesis will provide an update on the fundamental mechanisms of inflammatory responses that govern acute coronary syndromes and also highlight the ongoing balance between proinflammatory mechanisms and endogenous pathways that can promote the resolution of inflammation. An appreciation of the countervailing mechanisms that modulate inflammation in relation to acute coronary syndromes enriches our fundamental understanding of the pathophysiology of this important manifestation of atherosclerosis. In addition, these insights provide glimpses into potential novel therapeutic interventions to forestall this ultimate complication of the disease.
    Circulation Research 06/2014; 114(12):1867-79. · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interactions between cardiovascular disease (CVD) and insulin resistance syndromes suggest the possibility of joint targets for cardiometabolic research. The best drugs would go beyond minimizing adverse effects and have protective actions against both metabolic disease and CVD. In this perspective, we will outline a few examples in which a deep mechanistic understanding of the many cellular pathways that contribute to type 2 diabetes and CVD, regardless of cell type, have resulted in common upstream pathogenic pathways that can be therapeutically targeted.
    Science translational medicine 06/2014; 6(239):239ps5. · 10.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis, and atherosclerosis. (-/-) mice were transplanted with ApoE(-/-)Cbs(-/-) or ApoE(-/-) BM followed by Western-type diet feeding. Compared with ApoE(-/-) BM-transplanted controls, ApoE(-/-)Cbs(-/-) BM-transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged, reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, Western-type diet-fed ApoE(-/-) mice showed increased CBS expression on granulocyte macrophage colony-stimulating factor-producing innate response activator B cells and expansion of this population. ApoE(-/-)Cbs(-/-) BM-transplanted Ldlr(-/-) mice showed a marked decrease in innate response activator B cells compared with ApoE(-/-) BM-transplanted Ldlr(-/-) controls. Increased levels of CBS on HSPCs and splenic innate response activator B cells lead to expansion of these populations in ApoE(-/-) BM-transplanted Ldlr(-/-) mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilization.
    Arteriosclerosis Thrombosis and Vascular Biology 03/2014; · 6.34 Impact Factor
  • Nature Immunology 02/2014; 15(3):213-5. · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phagocytosis of apoptotic cells (ACs), or efferocytosis, by DCs is critical for self-tolerance and host defense. Although many efferocytosis-associated receptors have been described in vitro, the functionality of these receptors in vivo has not been explored in depth. Using a spleen efferocytosis assay and targeted genetic deletion in mice, we identified a multiprotein complex - composed of the receptor tyrosine kinase AXL, LDL receptor-related protein-1 (LRP-1), and RAN-binding protein 9 (RANBP9) - that mediates DC efferocytosis and antigen cross-presentation. We found that AXL bound ACs, but required LRP-1 to trigger internalization, in murine CD8α+ DCs and human-derived DCs. AXL and LRP-1 did not interact directly, but relied on RANBP9, which bound both AXL and LRP-1, to form the complex. In a coculture model of antigen presentation, the AXL/LRP-1/RANBP9 complex was used by DCs to cross-present AC-associated antigens to T cells. Furthermore, in a murine model of herpes simplex virus-1 infection, mice lacking DC-specific LRP-1, AXL, or RANBP9 had increased AC accumulation, defective viral antigen-specific CD8+ T cell activation, enhanced viral load, and decreased survival. The discovery of this multiprotein complex that mediates functionally important DC efferocytosis in vivo may have implications for future studies related to host defense and DC-based vaccines.
    The Journal of clinical investigation 02/2014; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell-type specific causation studies in vivo are lacking, and the molecular mechanisms of potential pro-atherogenic effects remain to be determined. To assess the importance of macrophage mitoOS in atherogenesis and explore the underlying molecular mechanisms. We first validated Western-type diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that a marker of mitoOS in lesional macrophages, non-nuclear oxidative DNA damage, correlates with aortic root lesion development. To investigate the importance of macrophage-mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of the monocyte chemotactic protein-1 (MCP-1). The decrease in lesional MCP-1 was associated with suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the pro-inflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed MCP-1 expression by decreasing activation of the IΚ-kinase-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-ΚB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.
    Circulation Research 12/2013; · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of obesity is selective suppression of hepatic insulin signaling ("insulin resistance"), but critical gaps remain in our understanding of the molecular mechanisms. We now report a major role for hepatic CaMKII, a calcium-responsive kinase that is activated in obesity. Genetic targeting of hepatic CaMKII, its downstream mediator p38, or the p38 substrate and stabilizer MK2 enhances insulin-induced p-Akt in palmitate-treated hepatocytes and obese mouse liver, leading to metabolic improvement. The mechanism of improvement begins with induction of ATF6 and the ATF6 target p58(IPK), a chaperone that suppresses the PERK-p-eIF2α-ATF4 branch of the UPR. The result is a decrease in the ATF4 target TRB3, an inhibitor of insulin-induced p-Akt, leading to enhanced activation of Akt and its downstream metabolic mediators. These findings increase our understanding of the molecular mechanisms linking obesity to selective insulin resistance and suggest new therapeutic targets for type 2 diabetes and metabolic syndrome.
    Cell metabolism 11/2013; · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disease with activation of both the innate and adaptive arms of the immune system. Dendritic cells (DCs) are potent activators of adaptive immunity and have been identified in the normal arterial wall and within atherosclerotic lesions. Recent evidence points to a functional role for DCs in all stages of atherosclerosis because of their myriad functions including lipid uptake, antigen presentation, efferocytosis, and inflammation resolution. Moreover, DC-based vaccination strategies are currently being developed for the treatment of atherosclerosis. This review will focus on the current evidence as well as the proposed roles for DCs in the pathogenesis of atherosclerosis and discuss future therapeutic strategies.
    Seminars in Immunopathology 11/2013; · 5.38 Impact Factor
  • Ira Tabas
    Circulation Research 04/2013; 112(8):1094-6. · 11.86 Impact Factor
  • Alex X Zhou, Ira Tabas
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple systemic factors and local stressors in the arterial wall can disturb the functions of endoplasmic reticulum (ER), causing ER stress in endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages during the initiation and progression of atherosclerosis. As a protective response to restore ER homeostasis, the unfolded protein response (UPR) is initiated by three major ER sensors: protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and activating transcription factor 6 (ATF6). The activation of the various UPR signaling pathways displays a temporal pattern of activation at different stages of the disease. The ATF6 and IRE1α pathways that promote the expression of protein chaperones in ER are activated in ECs in athero-susceptible regions of pre-lesional arteries and before the appearance of foam cells. The PERK pathway that reduces ER protein client load by blocking protein translation is activated in SMCs and macrophages in early lesions. The activation of these UPR signaling pathways aims to cope with the ER stress and plays a pro-survival role in the early stage of atherosclerosis. However, with the progression of atherosclerosis, the extended duration and increased intensity of ER stress in lesions lead to prolonged and enhanced UPR signaling. Under this circumstance, the PERK pathway induces expression of death effectors, and possibly IRE1α activates apoptosis signaling pathways, leading to apoptosis of macrophages and SMCs in advanced lesions. Importantly, UPR-mediated cell death is associated with plaque instability and the clinical progression of atherosclerosis. Moreover, UPR signaling is linked to inflammation and possibly to macrophage differentiation in lesions. Therapeutic approaches targeting the UPR may have promise in the prevention and/or regression of atherosclerosis. However, more progress is needed to fully understand all of the roles of the UPR in atherosclerosis and to harness this information for therapeutic advances.
    Seminars in Immunopathology 04/2013; · 5.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub-100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV-targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.
    Proceedings of the National Academy of Sciences 03/2013; · 9.81 Impact Factor
  • Ira Tabas, Christopher K Glass
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of widespread and devastating chronic diseases, including atherosclerosis, type 2 diabetes, and Alzheimer's disease, have a pathophysiologically important inflammatory component. In these diseases, the precise identity of the inflammatory stimulus is often unknown and, if known, is difficult to remove. Thus, there is interest in therapeutically targeting the inflammatory response. Although there has been success with anti-inflammatory therapy in chronic diseases triggered by primary inflammation dysregulation or autoimmunity, there are considerable limitations. In particular, the inflammatory response is critical for survival. As a result, redundancy, compensatory pathways, and necessity narrow the risk:benefit ratio of anti-inflammatory drugs. However, new advances in understanding inflammatory signaling and its links to resolution pathways, together with new drug development, offer promise in this area of translational biomedical research.
    Science 01/2013; 339(6116):166-72. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TLR activation on CD11c+ DCs triggers DC maturation, which is critical for T cell activation. Given the expansion of CD11c+ DCs during the progression of atherosclerosis and the key role of T cell activation in atherogenesis, we sought to understand the role of TLR signaling in CD11c+ DCs in atherosclerosis. To this end, we used a mouse model in which a key TLR adaptor involved in DC maturation, MYD88, is deleted in CD11c+ DCs. We transplanted bone marrow containing Myd88-deficient CD11c+ DCs into Western diet-fed LDL receptor knockout mice and found that the transplanted mice had decreased activation of effector T cells in the periphery as well as decreased infiltration of both effector T cells and Tregs in atherosclerotic lesions. Surprisingly, the net effect was an increase in atherosclerotic lesion size due to an increase in the content of myeloid-derived inflammatory cells. The mechanism involves increased lesional monocyte recruitment associated with loss of Treg-mediated suppression of MCP-1. Thus, the dominant effect of MYD88 signaling in CD11c+ DCs in the setting of atherosclerosis is to promote the development of atheroprotective Tregs. In the absence of MYD88 signaling in CD11c+ DCs, the loss of this protective Treg response trumps the loss of proatherogenic T effector cell activation.
    The Journal of clinical investigation 12/2012; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Acyl-CoA:cholesterol acyltransferase (ACAT) converts cholesterol to cholesteryl esters in plaque foam cells. Complete deficiency of macrophage ACAT has been shown to increase atherosclerosis in hypercholesterolemic mice because of cytotoxicity from free cholesterol accumulation, whereas we previously showed that partial ACAT inhibition by Fujirebio compound F1394 decreased early atherosclerosis development. In this report, we tested F1394 effects on preestablished, advanced lesions of apolipoprotein-E-deficient mice. METHODS AND RESULTS: Apolipoprotein-E-deficient mice on Western diet for 14 weeks developed advanced plaques, and were either euthanized (Baseline), or continued on Western diet with or without F1394 and euthanized after 14 more weeks. F1394 was not associated with systemic toxicity. Compared with the baseline group, lesion size progressed in both groups; however, F1394 significantly retarded plaque progression and reduced plaque macrophage, free and esterified cholesterol, and tissue factor contents compared with the untreated group. Apoptosis of plaque cells was not increased, consistent with the decrease in lesional free cholesterol, no increase in plaque necrosis, and unimpaired efferocytosis (phagocytic clearance of apoptotic cells). The effects of F1394 were independent of changes in plasma cholesterol levels. CONCLUSIONS: Partial ACAT inhibition by F1394 lowered plaque cholesterol content and had other antiatherogenic effects in advanced lesions in apolipoprotein-E-deficient mice without overt systemic or plaque toxicity, suggesting the continued potential of ACAT inhibition for the clinical treatment of atherosclerosis, in spite of recent trial data.
    Arteriosclerosis Thrombosis and Vascular Biology 11/2012; · 6.34 Impact Factor
  • Ira Tabas
    [Show abstract] [Hide abstract]
    ABSTRACT: Heart attacks occur when lipoprotein-driven inflammation called atherosclerosis triggers blood clotting in the arteries. It seems that the attacks can, in turn, accelerate atherosclerosis by fanning the inflammation. See Letter p.325
    Nature 07/2012; 487(7407):306-8. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of toxic lipids evokes the unfolded protein response (UPR) and apoptotic death of macrophages and vascular cells in atherosclerotic plaques. Primary macrophages from insulin-resistant ob/ob and insulin receptor (Insr)(-/-) mice display increased apoptosis in response to loading with free cholesterol or oxysterol, but underlying mechanisms have not been elucidated. We show increased activation of all three major branches of the UPR in response to free cholesterol or oxysterol loading in insulin-resistant macrophages. Inhibition and rescue experiments revealed that defective MEK/extracellular signal\x{2013}related kinase (ERK)/cAMP-responsive element-binding protein (CREBP) signaling in insulin-resistant macrophages leads to decreased expression of sarcoplasmic endoplasmic reticulum (ER) Ca(2+)-ATPase, depletion of ER calcium stores, PKR-like ER kinase activation, and ER stress-associated apoptosis. Activation of macrophage glucagon-like peptide 1 (GLP-1) receptor via the antidiabetic drug exenatide led to improvements in both ERK and AKT signaling and reversed the increase in UPR and apoptosis of insulin-resistant macrophages in atherosclerotic lesions of ob/ob.Ldlr(-/-) and Insr(-/-).Ldlr(-/-) mice. Increased signaling via GLP-1 receptor or the CREBP activator protein kinase A thus offers a way to rescue insulin-resistant macrophages from excessive ER stress responses and apoptosis in insulin resistance and type 2 diabetes.
    Diabetes 06/2012; 61(10):2609-20. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling through MyD88, an adaptor utilized by all TLRs except TLR3, is pro-atherogenic; however, it is unknown whether signaling through TIR-domain-containing adaptor-inducing interferon-β (TRIF), an adaptor used only by TLRs 3 and 4, is relevant to atherosclerosis. We determined that the TRIF(Lps2) lack-of-function mutation was atheroprotective in hyperlipidemic low density lipoprotein (LDL) receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were crossed with either TRIF(Lps2) or TLR3 knockout mice. After feeding an atherogenic diet for 10-15 wks, atherosclerotic lesions in the heart sinus and aorta were quantitated. LDLr(-/-) mice with TRIF(Lps2) were significantly protected from atherosclerosis. TRIF(Lps2) led to a reduction in cytokines secreted from peritoneal macrophages (Mϕ) in response to hyperlipidemia. Moreover, heart sinus valves from hyperlipidemic LDLr(-/-)TRIF(Lps2) mice had significantly fewer lesional Mϕ. However, LDLr(-/-) mice deficient in TLR3 showed some enhancement of disease. Collectively, these data suggest that hyperlipidemia resulting in endogenous activation of the TRIF signaling pathway from TLR4 leads to pro-atherogenic events.
    Innate Immunity 05/2012; · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis.
    Cell metabolism 04/2012; 15(5):739-51. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs), which associate with CRTC2. After their activation, InsP(3)Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP(3)Rs. InsP(3)R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP(3)Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP(3)R modulate hepatic glucose production under fasting conditions and in diabetes.
    Nature 04/2012; 485(7396):128-32. · 38.60 Impact Factor

Publication Stats

8k Citations
1,327.51 Total Impact Points

Institutions

  • 2014
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1998–2013
    • Columbia University
      • • Department of Medicine
      • • College of Physicians and Surgeons
      New York City, NY, United States
    • Institut Pasteur de Lille
      Lille, Nord-Pas-de-Calais, France
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2011
    • University of Washington Seattle
      Seattle, Washington, United States
    • State University of New York Downstate Medical Center
      • Department of Medicine
      Brooklyn, NY, United States
  • 2009
    • CUNY Graduate Center
      New York City, New York, United States
  • 2006
    • Cornell University
      • Department of Biochemistry
      Ithaca, NY, United States
  • 2000
    • University of California, Los Angeles
      • Department of Medicine
      Los Angeles, CA, United States