Heidi L Rehm

Harvard Medical School, Boston, Massachusetts, United States

Are you Heidi L Rehm?

Claim your profile

Publications (70)625.39 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing (NGS) technologies have revolutionized genetic testing by enabling simultaneous analysis of unprecedented numbers of genes. However, genes with high-sequence homology pose challenges to current NGS technologies. Because diagnostic sequencing is moving toward exome analysis, knowledge of these homologous genes is essential to avoid false positive and negative results. An example is the STRC gene, one of >70 genes known to contribute to the genetic basis of hearing loss. STRC is 99.6% identical to a pseudogene (pSTRC) and therefore inaccessible to standard NGS methodologies. The STRC locus is also known to be a common site for large deletions. Comprehensive diagnostic testing for inherited hearing loss therefore necessitates a combination of several approaches to avoid pseudogene interference. We have developed a clinical test that combines standard NGS and NGS-based copy number assessment supplemented with a long-range PCR-based Sanger or MiSeq assay to eliminate pseudogene contamination. By using this combination of assays we could identify biallelic STRC variants in 14% (95% CI, 8%-24%) of persons with isolated nonsyndromic hearing loss who had previously tested negative on our 70-gene hearing loss panel, corresponding to a detection rate of 11.2% (95% CI, 6%-19%) for previously untested patients. This approach has broad applicability because medically significant genes for many disease areas include genes with high-sequence homology.
    The Journal of molecular diagnostics: JMD 08/2014; · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As more research studies incorporate next-generation sequencing (including whole-genome or whole-exome sequencing), investigators and institutional review boards face difficult questions regarding which genomic results to return to research participants and how. An American College of Medical Genetics and Genomics 2013 policy paper suggesting that pathogenic mutations in 56 specified genes should be returned in the clinical setting has raised the question of whether comparable recommendations should be considered in research settings. The Clinical Sequencing Exploratory Research (CSER) Consortium and the Electronic Medical Records and Genomics (eMERGE) Network are multisite research programs that aim to develop practical strategies for addressing questions concerning the return of results in genomic research. CSER and eMERGE committees have identified areas of consensus regarding the return of genomic results to research participants. In most circumstances, if results meet an actionability threshold for return and the research participant has consented to return, genomic results, along with referral for appropriate clinical follow-up, should be offered to participants. However, participants have a right to decline the receipt of genomic results, even when doing so might be viewed as a threat to the participants' health. Research investigators should be prepared to return research results and incidental findings discovered in the course of their research and meeting an actionability threshold, but they have no ethical obligation to actively search for such results. These positions are consistent with the recognition that clinical research is distinct from medical care in both its aims and its guiding moral principles.
    The American Journal of Human Genetics 05/2014; · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.
    Nature 04/2014; 508(7497):469-76. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
    Genome biology 03/2014; 15(3):R53. · 10.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of a hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard of hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health-care services are provided in a linguistically and culturally sensitive manner. This guideline offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.Genet Med advance online publication 20 March 2014Genetics in Medicine (2014); doi:10.1038/gim.2014.2.
    Genetics in medicine: official journal of the American College of Medical Genetics 03/2014; · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care.Methods/design: This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients' genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes and behaviors of physician and patient participants at multiple time points before and after the disclosure of these results. The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine to evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only illuminate the impact of integrating genomic medicine into the clinical care of patients but also inform the design of future studies.Trial registration: ClinicalTrials.gov identifier NCT01736566.
    Trials 03/2014; 15(1):85. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:Dilated cardiomyopathy is characterized by substantial locus, allelic, and clinical heterogeneity that necessitates testing of many genes across clinically overlapping diseases. Few studies have sequenced sufficient individuals; thus, the contributions of individual genes and the pathogenic variant spectrum are still poorly defined. We analyzed 766 dilated cardiomyopathy patients tested over 5 years in our molecular diagnostics laboratory.Methods:Patients were tested using gene panels of increasing size from 5 to 46 genes, including 121 cases tested with a multiple-cardiomyopathy next-generation panel covering 46 genes. All variants were reassessed using our current clinical-grade scoring system to eliminate false-positive disease associations that afflict many older analyses.Results:Up to 37% of dilated cardiomyopathy cases carry a clinically relevant variant in one of 20 genes, titin (TTN) being the largest contributor (up to 14%). Desmoplakin (DSP), an arrhythmogenic right ventricular cardiomyopathy gene, contributed 2.4%, illustrating the utility of multidisease testing. The clinical sensitivity increased from 10 to 37% as gene panel sizes increased. However, the number of inconclusive cases also increased from 4.6 to 51%.Conclusion:Our data illustrate the utility of broad gene panels for genetically and clinically heterogeneous diseases but also highlight challenges as molecular diagnostics moves toward genome-wide testing.Genet Med advance online publication 6 February 2014Genetics in Medicine (2014); doi:10.1038/gim.2013.204.
    Genetics in medicine: official journal of the American College of Medical Genetics 02/2014; · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variants in the head and tail domains of the MYO7A gene, encoding myosin VIIA, cause Usher syndrome type 1B (USH1B) and nonsyndromic deafness (DFNB2, DFNA11). In order to identify the genetic defect(s) underling profound deafness in two consanguineous Arab families living in UAE, we have sequenced a panel of 19 genes involved in Usher syndrome and nonsyndromic deafness in the index cases of the two families. This analysis revealed a novel homozygous insertion of AG (c.1952_1953insAG/p.C652fsX11) in exon 17 of the MYO7A gene in an Iraqi family, and a homozygous point mutation (c.5660C>T/p.P1887L) in exon 41 affecting the same gene in a large Palestinian family. Moreover, some individuals from the Palestinian family also harbored a novel heterozygous truncating variant (c.1267C>T/p.R423X) in the DFNB31 gene, which is involved in autosomal recessive nonsyndromic deafness type DFNB31 and Usher syndrome type II. Assuming an autosomal recessive mode of inheritance in the two inbred families, we conclude that the homozygous variants in the MYO7A gene are the disease-causing mutations in these families. Furthermore, given the absence of retinal disease in all affected patients examined, particularly a 28 year old patient, suggests that at least one family may segregate a DFNB2 presentation rather than USH1B. This finding further supports the premise that the MYO7A gene is responsible for two distinct diseases and gives evidence that the p.P1887L mutation in a homozygous state may be responsible for nonsyndromic hearing loss.
    Molecular Biology Reports 11/2013; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As genomic and exomic testing expands in both the research and clinical arenas, determining whether, how, and which incidental findings to return to the ordering clinician and patient becomes increasingly important. Although opinion is varied on what should be returned to consenting patients or research participants, most experts agree that return of medically actionable results should be considered. There is insufficient evidence to fully inform evidence-based clinical practice guidelines regarding return of results from genome-scale sequencing, and thus generation of such evidence is imperative, given the rapidity with which genome-scale diagnostic tests are being incorporated into clinical care. We present an overview of the approaches to incidental findings by members of the Clinical Sequencing Exploratory Research network, funded by the National Human Genome Research Institute, to generate discussion of these approaches by the clinical genomics community. We also report specific lists of "medically actionable" genes that have been generated by a subset of investigators in order to explore what types of findings have been included or excluded in various contexts. A discussion of the general principles regarding reporting of novel variants, challenging cases (genes for which consensus was difficult to achieve across Clinical Sequencing Exploratory Research network sites), solicitation of preferences from participants regarding return of incidental findings, and the timing and context of return of incidental findings are provided.Genet Med 15 11, 860-867.Genetics in Medicine (2013); 15 11, 860-867. doi:10.1038/gim.2013.133.
    Genetics in medicine: official journal of the American College of Medical Genetics 11/2013; 15(11):860-7. · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To understand the impact of GeneInsight Clinic (GIC), a web-based tool designed to manage genetic information and facilitate communication of test results and variant updates from the laboratory to the clinics, we measured the use of GIC and the time it took for new genetic knowledge to be available to clinicians. Usage data were collected across four study sites for the GIC launch and post-GIC implementation time periods. The primary outcome measures were the time (average number of days) between variant change approval and notification of clinic staff, and the time between notification and viewing the patient record. Post-GIC, time between a variant change approval and provider notification was shorter than at launch (average days at launch 503.8, compared to 4.1 days post-GIC). After e-mail alerts were sent at launch, providers clicked into the patient record associated with 91% of these alerts. In the post period, clinic providers clicked into the patient record associated with 95% of the alerts, on average 12 days after the e-mail was sent. We found that GIC greatly increased the likelihood that a provider would receive updated variant information as well as reduced the time associated with distributing that variant information, thus providing a more efficient process for incorporating new genetic knowledge into clinical care. Our study results demonstrate that health information technology systems have the potential effectively to assist providers in utilizing genetic information in patient care.
    Journal of the American Medical Informatics Association 09/2013; · 3.57 Impact Factor
  • Source
  • Source
  • Source
    Dataset: nbt.2403-S1
  • [Show abstract] [Hide abstract]
    ABSTRACT: This report describes an algorithm developed to predict the pathogenicity of copy number variants (CNVs) in large sample cohorts. CNVs (genomic deletions and duplications) are found in healthy individuals and in individuals with genetic diagnoses, and differentiation of these two classes of CNVs can be challenging and usually requires extensive manual curation. We have developed PECONPI, an algorithm to assess the pathogenicity of CNVs based on gene content and CNV frequency. This software was applied to a large cohort of patients with genetically heterogeneous non-syndromic hearing loss to score and rank each CNV based on its relative pathogenicity. Of 636 individuals tested, we identified the likely underlying etiology of the hearing loss in 14 (2%) of the patients (1 with a homozygous deletion, 7 with a deletion of a known hearing loss gene and a point mutation on the trans allele and 6 with a deletion larger than 1 Mb). We also identified two probands with smaller deletions encompassing genes that may be functionally related to their hearing loss. The ability of PECONPI to determine the pathogenicity of CNVs was tested on a second genetically heterogenous cohort with congenital heart defects (CHDs). It successfully identified a likely etiology in 6 of 355 individuals (2%). We believe this tool is useful for researchers with large genetically heterogeneous cohorts to help identify known pathogenic causes and novel disease genes. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 07/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual's near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines.Genet Med advance online publication 25 July 2013Genetics in Medicine (2013); doi:10.1038/gim.2013.92.
    Genetics in medicine: official journal of the American College of Medical Genetics 07/2013; · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hearing impairment affects 1 in 650 newborns, making it the most common congenital sensory impairment. Autosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing impairment cases. Mutations in GJB2 account for a significant number of ARNSHI (and up to 50% of documented recessive (e.g., more than 1 affected sibling) hearing impairment in some populations). Mutations in the GJB2 gene are amongst the most common causes of hearing impairment in populations of various ethnic backgrounds. Two mutations of this gene, 35delG and 167delT, account for the majority of reported mutations in Caucasian populations, especially those of Mediterranean and Ashkenazi Jewish background. The 235delC mutation is most prevalent in East Asian populations. Some mutations are of less well-characterized significance. The V37I missense mutation, common in Asian populations, was initially described as a polymorphism and later as a potentially pathogenic mutation. We report here on 15 unrelated individuals with ARNSHI and homozygosity for the V37I GJB2 missense mutation. Nine individuals are of Chinese ancestry, two are of unspecified Asian descent, one is of Japanese descent, one individual is of Vietnamese ancestry, one of Philippine background and one of Italian and Cuban/Caucasian background. Homozygosity for the V37I GJB2 mutation may be a more common pathogenic missense mutation in Asian populations, resulting in mild to moderate sensorineural hearing impairment. We report a presumed haplotype block specific to East Asian individuals with the V37I mutation encompassing the GJB2 gene that may account for the high prevalence in East Asian populations. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 07/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clinical testing, and reporting of results. The ACMG appointed a Working Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible management of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recommendations, and the background and rationale for these recommendations, are described herein. The ACMG recommends that laboratories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (constitutional) exome and genome sequencing, including the "normal" of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recommendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.Genet Med advance online publication 20 June 2013Genetics in Medicine (2013); doi:10.1038/gim.2013.73.
    Genetics in medicine: official journal of the American College of Medical Genetics 06/2013; · 3.92 Impact Factor
  • Source
    Bruce R Korf, Heidi L Rehm
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in understanding the molecular basis of rare and common disorders, as well as in the technology of DNA analysis, are rapidly changing the landscape of molecular genetic and genomic testing. High-resolution molecular cytogenetic analysis can now detect deletions or duplications of DNA of a few hundred thousand nucleotides, well below the resolution of the light microscope. Diagnostic testing for "single-gene" disorders can be done by targeted analysis for specific mutations, by sequencing a specific gene to scan for mutations, or by analyzing multiple genes in which mutation may lead to a similar phenotype. The advent of massively parallel next-generation sequencing facilitates the analysis of multiple genes and now is being used to sequence the coding regions of the genome (the exome) for clinical testing. Exome sequencing requires bioinformatic analysis of the thousands of variants that are identified to find one that is contributing to the pathology; there is also a possibility of incidental identification of other medically significant variants, which may complicate genetic counseling. DNA testing can also be used to identify variants that influence drug metabolism or interaction of a drug with its cellular target, allowing customization of choice of drug and dosage. Exome and genome sequencing are being applied to identify specific gene changes in cancer cells to guide therapy, to identify inherited cancer risk, and to estimate prognosis. Genomic testing may be used to identify risk factors for common disorders, although the clinical utility of such testing is unclear. Genetic and genomic tests may raise new ethical, legal, and social issues, some of which may be addressed by existing genetic nondiscrimination legislation, but which also must be addressed in the course of genetic counseling. The purpose of this article is to assist physicians in recognizing where new approaches to genetic and genomic testing may be applied clinically and in being aware of the principles of interpretation of test results.
    JAMA The Journal of the American Medical Association 04/2013; 309(14):1511-21. · 29.98 Impact Factor
  • Heidi L Rehm
    [Show abstract] [Hide abstract]
    ABSTRACT: With the declining cost of sequencing and the ongoing discovery of disease genes, it is now possible to examine hundreds of genes in a single disease-targeted test. Although exome- and genome-sequencing approaches are beginning to compete, disease-targeted testing retains certain advantages and still holds a firm place in the diagnostic evaluation. Here I examine the current state of clinical disease-targeted sequencing and evaluate the benefits and challenges of incorporating sequencing tests into patient care.
    Nature Reviews Genetics 03/2013; · 41.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2012 International Standards for Cytogenomic Arrays (ISCA) Consortium Meeting, "Towards a Universal Clinical Genomic Database," was held in Bethesda, MD, 21-22 May 2012 and was attended by over 200 individuals from around the world representing clinical genetic testing laboratories, clinicians, academia, industry, research, and regulatory agencies. The scientific program centered on expanding the current focus of the ISCA Consortium to include the collection and curation of both structural and sequence-level variation into a unified clinical genomics database, available to the public through resources such as the National Center for Biotechnology Information (NCBI)'s ClinVar database. Here, we provide an overview of the conference, with summaries of the topics presented for discussion by over 25 different speakers. Presentations are available online at www.iscaconsortium.org.
    Human Mutation 03/2013; · 5.21 Impact Factor

Publication Stats

2k Citations
625.39 Total Impact Points

Institutions

  • 1997–2014
    • Harvard Medical School
      • • Department of Pathology
      • • Department of Genetics
      • • Department of Otology and Laryngology
      Boston, Massachusetts, United States
  • 2013
    • University of Alabama at Birmingham
      • Department of Genetics
      Birmingham, AL, United States
  • 2011–2013
    • The Children's Hospital of Philadelphia
      Philadelphia, Pennsylvania, United States
    • Partners HealthCare
      Boston, Massachusetts, United States
  • 2012
    • Centers for Disease Control and Prevention
      • Division of Laboratory Sciences
      Druid Hills, GA, United States
  • 2010
    • Columbia University
      • Department of Medicine
      New York City, NY, United States
  • 2009–2010
    • Cincinnati Children's Hospital Medical Center
      • Division of Biomedical Informatics
      Cincinnati, OH, United States
    • Abbott Northwestern Hospital
      Minneapolis, Minnesota, United States
  • 2007–2010
    • Boston Children's Hospital
      • Department of Otolaryngology and Communication Enhancement
      Boston, MA, United States
  • 1997–2010
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States
  • 2003
    • Harvard University
      Cambridge, Massachusetts, United States