David Faulkner

Lawrence Berkeley National Laboratory, Berkeley, California, United States

Are you David Faulkner?

Claim your profile

Publications (59)56.12 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.
    Indoor Air 01/2012; 22(4):309-20. · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.
    IAQ Applications. 10/2008; 9(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.
    01/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rate of outdoor air (OA) supply affects building energy consumption, occupant health, and work performance; however, minimum ventilation rates are often poorly controlled. Real-time measurements of OA flow rates into HVAC systems would enable improved flow control. This article demonstrates that at least some of the available technologies for real-time measurement of OA air intake rate are reasonably accurate and provides guidance on how these technologies should be used.
    Ashrae Journal 07/2005; 48. · 0.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, D.C. with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The annual financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modeling suggests that economizers are much more cost effective than currently recognized.
    01/2005;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.
    ASHRAE Transactions 10/2004; 111(pt2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. PRACTICAL IMPLICATIONS: This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.
    Indoor Air 10/2004; 14(5):333-41. · 3.30 Impact Factor
  • Olli Seppanen, William J. Fisk, David Faulkner
    [Show abstract] [Hide abstract]
    ABSTRACT: Indoor temperature is one of the fundamental characteristics of the indoor environment. It can be controlled with different accuracy depending on the building and its HVAC system. The purpose of this study was to evaluate the potential benefits of improved temperature control, and apply the information for a cost-benefit analyses. The indoor temperature affects several human responses, including thermal comfort, perceived air quality, sick building syndrome symptoms and performance in work. In this study we focused on the effects of temperature on performance in work. We collected and analyzed the literature relating the performance in work and temperature. The results of multiple studies are relatively consistent and show an average relationship of 2% decrement in work performance per degree C when the temperature is above 25 C. Less data were available on the performance in low temperatures. However, studies show a strong effect on manual tasks with temperatures below thermal neutrality as soon as the temperature of hands decreased due to control of blood flow. When the estimated productivity decrement from elevated temperatures was applied to data from a study of night-time ventilative cooling, the estimated value of productivity improvements were 32 to 120 times greater than the cost of energy to run fans during the night.
    ASHRAE Transactions 06/2004; 111(pt2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twenty-seven laboratory experiments were conducted in a simulated smoking room to quantify rates of environmental tobacco smoke (ETS) leakage to a nonsmoking area as a function of the physical and operational characteristics of the smoking room. Data are presented for the various types of leakage flows, the effect of these leaks on smoking room performance and nonsmoker exposure, and the relative importance of each leakage mechanism. The results indicate that the first priority for an effective smoking room is to maintain it depressurized with respect to adjoining nonsmoking areas. The amount of ETS pumped out by the smoking room door when it is opened and closed can be reduced significantly by substituting a sliding door for the standard swing-type door. An "open doorway" configuration used twice the ventilation flow of those with smoking room doors, but yielded less reduction in nonsmoker exposure. Measured results correlated well with results modeled with mass-balance equations (R(2) = 0.82-0.99). Most of these results are based on sulfur hexafluoride (SF(6)) tracer gas leakage. Because five measured ETS tracers showed good correlation with SF(6), these conclusions should apply to ETS leakage as well. Field tests of a designated smoking room in an office building qualitatively agreed with model predictions.
    Journal of Occupational and Environmental Hygiene 03/2004; 1(2):110-8. · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the relationship between ventilation rates and individual work performance in a call center, and controlled for other factors of the indoor environment. We randomized the position of the outdoor air control dampers, and measured ventilation rate, differential (indoor minus outdoor) carbon dioxide (DeltaCO(2)) concentration, supply air velocity, temperature, humidity, occupant density, degree of under-staffing, shift length, time of day, and time required to complete two different work performance tasks (talking with clients and post-talk wrap-up to process information). DeltaCO(2) concentrations ranged from 13 to 611 p.p.m. We used multivariable regression to model the association between the predictors and the responses. We found that agents performed talk tasks fastest when the ventilation rate was highest, but that the relationship between talk performance and ventilation was not strong or monotonic. We did not find a statistically significant association between wrap-up performance and ventilation rate. Agents were slower at the wrap-up task when the temperature was high (> 25.4 degrees C). Agents were slower at wrap-up during long shifts and when the call center was under-staffed. PRACTICAL IMPLICATIONS: The productivity benefits of ventilation rates that exceed common standards such as ASHRAE Standard 62 may be small (0-2%), and other factors may have a larger impact on productivity. Understaffing and long shifts should be avoided because both showed a negative impact on performance. In this study, high temperature had the largest statistically significant impact on productivity and was caused by occupants fighting over the thermostat setpoint. Care should be taken to avoid high temperatures in call centers. If occupants are allowed to adjust temperature setpoints, then the size and/or duration of the setpoint change should be restricted.
    Indoor Air 02/2004; 14 Suppl 8:41-50. · 3.30 Impact Factor
  • Source
    D Faulkner, W J Fisk, D P Sullivan, S M Lee
    [Show abstract] [Hide abstract]
    ABSTRACT: In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air towards a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15 degrees to 45 degrees from horizontal), and the supply flow rate of (3.5-6.5 l/s). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin using comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ( approximately 5 degrees C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially-available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort. PRACTICAL IMPLICATIONS: With a desk-edge-mounted task ventilation system it is possible to obtain an increase in the effective ventilation rate of 50%. This could lead to reduced energy use. Also, this improvement can be gained while maintaining thermal comfort for occupants. Thus occupants can be thermally comfortable and save energy at the same time.
    Indoor Air 02/2004; 14 Suppl 8:92-7. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO2 generation rates were 0.0068–0.0092 l s−1. The per occupant isoprene generation rates of 0.2–0.3 mg h−1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source control measures, in addition to adequate ventilation, are required to limit concentrations of VOCs in office buildings.
    Atmospheric Environment 12/2003; · 3.11 Impact Factor
  • 06/2003; 75(7).
  • 06/2003; 45(7).
  • Olli Seppanen, William J. Fisk, David Faulkner
    [Show abstract] [Hide abstract]
    ABSTRACT: The indoor temperature can be controlled with different levels of accuracy depending on the building and its HVAC system. The purpose of this study was to evaluate the potential productivity benefits of improved temperature control, and to apply the information for a cost-benefit analyses of night-time ventilative cooling, which is a very energy efficient method of reducing indoor daytime temperatures. We analyzed the literature relating work performance with temperature, and found a general decrement in work performance when temperatures exceeded those associated with thermal neutrality. These studies included physiological modelling, performance of various tasks in laboratory experiments and measured productivity at work in real buildings. The studies indicate an average 2% decrement in work performance per degree C temperature rise, when the temperature is above 25 C. When we use this relationship to evaluate night-time ventilative cooling, the resulting benefit to cost ratio varies from 32 to 120.
    01/2003;
  • Indoor Air 01/2003; 14(5). · 3.30 Impact Factor
  • Source
    W J Fisk, D Faulkner, J Palonen, O Seppanen
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper predicts the reductions in the indoor mass concentrations of particles attainable from use of filters in building supply airstreams and also from use of stand-alone fan-filter units. Filters with a wide efficiency range are considered. Predicted concentration reductions are provided for indoor-generated particles containing dust-mite and cat allergen, for environmental tobacco smoke (ETS) particles, and for outdoor air fine-mode particles. Additionally, this paper uses a simple model and available data to estimate the energy and total costs of the filtration options. Predicted reductions in cat and dust-mite allergen concentrations range from 20 to 80%. To obtain substantial, e.g. 50%, reductions in indoor concentrations of these allergens, the rate of airflow through the filter must be at least a few indoor volumes per hour. Increasing filter efficiencies above approximately ASHRAE Dust Spot 65% does not significantly reduce predicted indoor concentrations of these allergens. For ETS particles and outdoor fine-mode particles, calculations indicate that relatively large, e.g. 80%, decreases in indoor concentrations are attainable with practical filter efficiencies and flow rates. Increasing the filter efficiency above ASHRAE 85% results in only modest predicted incremental decreases in indoor concentration. Energy costs and total costs can be similar for filtration using filters with a wide range of efficiency ratings. Total estimated filtration costs of approximately $0.70 to $1.80 per person per month are insignificant relative to salaries, rent, or health insurance costs.
    Indoor Air 01/2003; 12(4):223-34. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the effects of removing small airborne particles in an office building without unusual contaminant sources or occupant complaints. We conducted a double-blind crossover study of enhanced particle filtration in an office building in the Midwest United States in 1993. We replaced standard particle filters, in separate ventilation systems on two floors, with highly efficient filters on alternate floors weekly over 4 weeks. Repeated-measures models were used to analyze data from weekly worker questionnaires and multiple environmental measurements. Bioaerosol concentrations were low. Enhanced filtration reduced concentrations of the smallest airborne particles by 94%. This reduction was not associated with reduced symptoms among the 396 respondents, but three performance-related mental states improved; for example, the confusion scale decreased (-3.7%; 95% confidence limits (CL) = -6.5, -0.9). Most environmental dissatisfaction variables also improved; eg, "stuffy" air, -5.3% (95% CL = -10.3, -0.4). Cooler temperatures within the recommended comfort range were associated with remarkably large improvement in most outcomes; for example, chest tightness decreased -23.4% (95% CL = -38.1, -8.7) for every 1 degrees C decrease. Benefits of enhanced filtration require assessment in buildings with higher particulate contaminant levels in studies controlling for temperature effects. Benefits from lower indoor temperatures need confirmation.
    Epidemiology 06/2002; 13(3):296-304. · 5.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the relationship of ventilation rates with the performance of advice nurses working in a call center. Ventilation rates were manipulated; temperatures, humidities, and CO2 concentrations were monitored; and worker performance data, with 30-minute resolution, were collected. Multivariate linear regression was used to investigate the association of worker performance with building ventilation rate, or with indoor CO2 concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate (roughly 12 L s-1 to 48 L s-1 per person). However, there is some evidence of worker performance improvements of 2% or more when the ventilation rate per person was very high, as indicated by the indoor CO2 concentration exceeding the outdoor concentration by less than 75 ppm.
    01/2002;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the relationship of ventilation rates with the performance of advice nurses working in a call center. Ventilation rates were manipulated, temperatures, humidities, and CO2 concentrations were monitored, and worker performance data, with 30-minute resolution, were collected. Multivariate linear regressions were employed to investigate the association of performance with building ventilation rate, or with indoor CO2 concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate (roughly 12 L s-1 to 48 L s-1 per person). However, there is some evidence of performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO2 concentrations exceeding outdoor concentrations by less than 75 ppm.
    01/2002;

Publication Stats

458 Citations
56.12 Total Impact Points

Institutions

  • 1992–2012
    • Lawrence Berkeley National Laboratory
      • Indoor Environment Group
      Berkeley, California, United States
  • 1991–2004
    • University of California, Berkeley
      • • Center for the Built Environment
      • • Center for Environmental Design Research (CEDR)
      Berkeley, CA, United States