Angeliki Karanasiou

CREAL Center for Research in Environmental Epidemiology, Barcino, Catalonia, Spain

Are you Angeliki Karanasiou?

Claim your profile

Publications (29)95.45 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to address road traffic emissions, studies need to be performed under realistic driving conditions where the input from other sources is minimised. Measurements in traffic tunnels have been used for quantifying emissions, but so far no study has established emission factors (EFs) for Southern Europe. To fill this gap, a sampling campaign was carried out for one week in the Liberdade Avenue tunnel (Braga, Portugal). The campaign included the monitoring of gaseous pollutants (CO2, CO, NOx) and suspended particulate matter (PM) at two sites, one in the tunnel and another in an urban background location. Organic and elemental carbon (OC and EC) in size-segregated particles (PM0.5, PM0.5–1, PM1–2.5 and PM2.5–10) were determined by a thermal–optical system, whereas major and trace elements were analysed by ICP-MS and ICP-AES. PM0.5 accounted for 56% of the PM10 mass, while PM2.5–10 represented only 12%. The carbonaceous fraction was concentrated in PM0.5, encompassing 88% of the EC and 67% of the OC present in PM10. Elements attributable to non-exhaust emissions could be divided into two groups. Fe, Ba, Cu, Sb, Sn and Zn, from tyre and brake wear, were more abundant in particles between 1 and 2 μm. Ca, Al, K, Sr and Ti, associated with soil resuspension, were mainly present in particles > 2 μm. The average EFs of CO, CO2 and NOx were 212, 4.02 and 1.22 g veh− 1 km− 1, respectively, while values of 152 mg PM10 veh− 1 km− 1 and 133 mg PM2.5 veh− 1 km− 1 were obtained for the particles. OC and EC emission factor was 39 mg veh− 1 km− 1 for PM10. The corresponding OC and EC values for PM2.5 were 34 and 38 mg veh− 1 km− 1. The EFs are slightly lower than those found for other tunnels, but within the ranges presented by the EMEP/EEA inventory.
    Atmospheric Research. 01/2015; 153:134–144.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal contents in soil samples are commonly used to evaluate contamination levels. However, the distribution of metals is dependent on particle size. We investigated the distribution of metals in various particle size fractions of the soil from four sites of the Puchuncaví Valley (Central Chile). The soil samples were segregated into size fractions ranging from 0.3 to 20μm and analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of the statistical analysis of the total metal concentrations indicated that the soil samples from Greda and Maitenes, the sites nearest the industrial sources, are the most contaminated. For these sites, the size-fractionated samples containing higher concentrations of Cu, Zn, As, and Pb were found in the finer fractions, suggesting anthropogenic depositions from smelter facilities. In addition, a high Ca concentration was observed in the finer fractions, which could be attributed to the technological approaches used to reduce the SO2 emissions from the roasting process of copper sulfide. The mineral composition of fine particles permitted the identification of Tenorite and Calcium oxide, which are most likely associated with smelting activities, confirming emission of enriched particulate matter from the copper smelter.
    Chemosphere 09/2014; 111C:513-521. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of statistical techniques for the recognition and identification of contamination sources has become an increasingly important tool. The chemical compositions of soil samples collected in the Puchuncaví Valley (Chile) provide a dataset suitable for the application of source apportionment techniques such as positive matrix factorization (PMF) and principal component analysis (PCA) with varimax rotation. PMF allowed the identification of the chemical profile and the relative contribution of three interpretable factors related to three contamination sources. Combining these results with a PCA analysis successfully showed that the main source of pollution emits Cu, Zn, As, Se, Mo, Sn, Sb and Pb. Therefore, the use of source profiles for contaminated soils shows much promise both for incorporating well-established knowledge about pollution sources and as a tool for incremental, exploratory data analysis.
    Chemometrics and Intelligent Laboratory Systems 08/2014; 138:127–132. · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Commuting is considered as one of the high-exposure periods among various daily activities, especially in high vehicle-density metropolitan areas. There is a growing awareness of the need to change our transportation habits by reducing our use of cars and shifting instead to active transport, i.e. walking or cycling. A review was undertaken using the ISI web of knowledge database with the objective to better understand personal exposure during commuting by different modes of transport, and to suggest potential strategies to minimise exposure. The air pollutants studied include particulate matter, PM black carbon, BC and particle number concentration. We focused only in European studies in order to have comparable situation in terms of vehicle fleet and policy regulations applied. Studies on personal exposure to air pollutants during car commuting are more numerous than those dealing with other types of transport, and typically conclude by emphasising that travelling by car involves exposure to relatively high particulate matter, PM exposure concentrations. Thus, compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling. Widespread dependence on private car transport has produced a significant daily health threat to the urban commuter. However, a forward-looking, integrated transport policy, involving the phased renovation of existing public vehicles and the withdrawal of the more polluting private vehicles, combined with incentives to use public transport and the encouragement of commuter physical exercise, would reduce commuters' exposure.
    Science of The Total Environment 06/2014; 490C:785-797. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the short-term effects of particles with aerodynamic diameter less than 2.5 μm (PM2.5), between 2.5 and 10 μm (PM2.5–10) and less than 10 μm (PM10) on deaths from diabetes, cardiac and cerebrovascular causes, lower respiratory tract infections (LRTI) and chronic obstructive pulmonary disease (COPD) in 10 European Mediterranean metropolitan areas participating in the MED-PARTICLES project during 2001–2010. In the first stage of the analysis, data from each city were analyzed separately using Poisson regression models, whereas in the second stage, the city-specific air pollution estimates were combined to obtain overall estimates. We investigated the effects following immediate (lags 0–1), delayed (lags 2–5) and prolonged exposure (lags 0–5) and effect modification patterns by season. We evaluated the sensitivity of our results to co-pollutant exposures or city-specific model choice. We applied threshold models to investigate the pattern of selected associations. For a 10 μg/m3 increase in two days' PM2.5 exposure there was a 1.23% (95% confidence interval (95% CI): − 1.63%, 4.17%) increase in diabetes deaths, while six days' exposure statistically significantly increased cardiac deaths by 1.33% (95% CI: 0.27, 2.40%), COPD deaths by 2.53% (95% CI: − 0.01%, 5.14%) and LRTI deaths by 1.37% (95% CI: − 1.94%, 4.78%). PM2.5 results were robust to co-pollutant adjustments and alternative modeling approaches. Stronger effects were observed in the warm season. Coarse particles displayed positive, even if not statistically significant, associations with mortality due to diabetes and cardiac causes that were more variable depending on exposure period, co-pollutant and seasonality adjustment. Our findings provide support for positive associations between PM2.5 and mortality due to diabetes, cardiac causes, COPD, and to a lesser degree to cerebrovascular causes, in the European Mediterranean region, which seem to drive the particles short-term health effects.
    Environment international 01/2014; 67:54–61. · 6.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16×16 km2. In a second step, we used the concentration–response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005–2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results Our model suggested that there would be a mean overall reduction in fine particle levels of 1 µg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline in fine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.
    Environmental Research 01/2014; 128:15–26. · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The variability of common aerosol species in large Metropolitan urban areas is a major air quality issue with strong health impacts of large populations. PM10 and PM2.5 particulate matter samples were obtained at three sites characteristic of industrial, urban traffic and sub-urban residential areas in the Athens basin. Samples were analysed for anions (Cl−, NO3−, SO42−) and cations (K+, Na+, Ca2+, Mg2+, NH4+) using ion chromatography. The spatial and temporal variability for the particulate matter (PM) concentration mass and water-soluble ionic species concentrations for the investigated sites were studied. Mean PM fine concentration levels were 20% higher at the industrial and the central urban areas compared to those in the suburban area (24.2 μg/m3). The mean values for the coarse fraction at those two sites were two to three times higher compared to those at the suburban site (12.4 μg/m3). Comparable concentration levels of most species were observed in all areas, while SO42− and NO3− differ at a significant level. Furthermore, the average size distributions of the mass and individual ions at the suburban site (NCSR Demokritos) showed a bimodal size distribution. SO42− and NH4+ have their main peak in the fine fraction while NO3− showed equal distribution on the fine and coarse mode. . Good correlation was found for SO42− and NO3− with Ca2+ and Na+ with Cl− for the coarse fraction in the industrial area. NH4+ was closely correlated with SO42− in the fine particles and in all areas. For the urban site the best correlations in coarse particulates were reported between Na+/Mg2+–Cl−, Ca2+/Mg2+–SO42−, explained by neutralization of acidic aerosol by soil dust and sea salt in the coarse fraction. Moreover, time weighted concentrations roses at the industrial and urban sites, showed no significant directional dependence, indicating either uniform generation of mainly the coarse species within the metropolitan area or major influence of the regional background for the fine aerosol species.
    Atmospheric Environment. 01/2014; 97:252–261.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies reported significant variability of air pollutants across Europe with the lowest concentrations generally found in Northern Europe and the highest in Southern European countries. Within the MED-PARTICLES project the spatial and temporal variations of long-term PM and gaseous pollutants data were investigated in traffic and urban background sites across Southern Europe. The highest PM levels were observed in Greece and Italy (Athens, Thessaloniki, Turin and Rome) while all traffic sites showed high NO2 levels, frequently exceeding the established limit value. High PM2.5/PM10 ratios were calculated indicating that fine particles comprise a large fraction of PM10, with the highest values found in the urban background sites. It seems that although in traffic sites the concentrations of both PM2.5 and PM10 are significantly higher than those registered in urban background sites, the coarse fraction PM2.5–10 is more important at the traffic sites. This fact is probably due to the high levels of resuspended road dust in sites highly affected by traffic, a phenomenon particularly relevant for Mediterranean countries. The long-term trends of air pollutants revealed a significant decrease of the concentration levels for PM, SO2 and CO while for NO2 no clear trend or slightly increasing trends were observed. This reduction could be attributed to the effectiveness of abatement measures and strategies and also to meteorological conditions and to the economic crisis that affected Southern Europe.
    Science of The Total Environment 01/2014; s 488–489:297–315. · 3.26 Impact Factor
  • Source
    ATMOSPHERIC CHEMISTRY AND PHYSICS 11/2013; 13(21):10767-10768. · 5.51 Impact Factor
  • Source
    ATMOSPHERIC CHEMISTRY AND PHYSICS 09/2013; 13:8991-9019. · 5.51 Impact Factor
  • European Aerosol Conference; 09/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We interpret here the variability of levels of carbonaceous aerosols based on a 12-yr database from 78 monitoring stations across Spain especially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC), with very little elemental carbon (EC) 0.1 μg m-3; OC/EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC/EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC/EC = 3.37 EC-0.67 R2 = 0.94). A similar equation is obtained when including average concentrations obtained at other European sites (y = 3.61x-0.5, R2 = 0.78). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance to road, traffic volume and density, mixing layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend of NO2/OC+EC ratios, because these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC+EC are very good candidates for new air quality standards since they cover both emission impact and health related issues.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 07/2013; 13:6185–6206. · 5.51 Impact Factor
  • Atmospheric Environment 06/2013; · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Few studies have investigated the independent health effects of different size fractions of particulate matter (PM), in multiple locations, especially in Europe. OBJECTIVES: We estimated the short-term effects of PM with aerodynamic diameter less than 10μm (PM10), less than 2.5μm (PM2.5), and between 2.5 and 10μm (PM2.5-10) on all-cause, cardiovascular and respiratory mortality in 10 European Mediterranean metropolitan areas within the MED-PARTICLES project. METHOD Ss: We analyzed data from each city using Poisson regression models, and combined city-specific estimates to derive overall effect estimates. We evaluated the sensitivity of our estimates to co-pollutant exposures and city-specific model choice, and investigated effect modification by age, sex, and season. We applied distributed lag and threshold models to investigate temporal patterns of associations. RESULTS: A 10-μg/m(3) increase in PM2.5 was associated with a 0.55% (95% CI: 0.27, 0.84%) increase in all-cause mortality (0-1 day cumulative lag), and a 1.91% increase (95%CI: 0.71, 3.12%) in respiratory mortality (0-5 day lag). In general, associations were stronger for cardiovascular and respiratory mortality than all-cause mortality, during warm versus cold months, and among those ≥ 75 versus <75 years of age. Associations with PM2.5-10 were positive but not statistically significant in most analyses, while associations with PM10 seemed to be driven by PM2.5 CONCLUSIONS: We found evidence of adverse effects of PM2.5 on mortality outcomes in the European Mediterranean region. Associations with PM2.5-10 were positive but smaller in magnitude. Associations were stronger for respiratory mortality when cumulative exposures were lagged over 0-5 days, and were modified by season and age.
    Environmental Health Perspectives 05/2013; · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA.
    Atmospheric Environment 05/2013; 70:337–350. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82%) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 04/2013; 13(8):4375-4392. · 5.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Particulate matter emissions from paved roads are currently one of the main challenges for a sustainable transport in Europe. Emissions are scarcely estimated due to the lack of knowledge about the resuspension process severely hampering a reliable simulation of PM and heavy metals concentrations in large cities and evaluation of population exposure. In this study the Emission Factors from road dust resuspension on a Mediterranean freeway were estimated per single vehicle category and PM component (OC, EC, mineral dust and metals) by means of the deployment of vertical profiles of passive samplers and terminal concentration estimate. The estimated PM10 emission factors varied from 12 to 47 mg VKT−1 (VKT: Vehicle Kilometer Traveled) with an average value of 22.7 ± 14.2 mg VKT−1. Emission Factors for heavy and light duty vehicles, passenger cars and motorbikes were estimated, based on average fleet composition and EPA ratios, in 187–733 mg VKT−1, 33–131 VKT−1, 9.4–36.9 VKT−1 and 0.8–3.3 VKT−1, respectively. These range of values are lower than previous estimates in Mediterranean urban roads, probably due to the lower dust reservoir on freeways. PM emitted material was dominated by mineral dust (9–10 mg VKT−1), but also OC and EC were found to be major components and approximately 14–25% and 2–9% of average PM exhaust emissions from diesel passenger cars on highways respectively.
    Atmospheric Environment 12/2012; 61:580–587. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.
    Atmospheric Chemistry and Physics 08/2012; 12(8):20135-20180. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust.
    Environment international 07/2012; 47:107-14. · 6.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies conducted in urban areas have pointed out that road dust resuspension contributes significantly to PM concentration levels. Street washing is one of the methods proposed to reduce resuspended road dust contributions to ambient PM concentrations. As resuspended particles are mainly found in the coarse mode, published studies investigating the effects of street washing have focused on PM10 size fraction. As the PM2.5 mass fraction of particles originating from mechanical abrasion processes may still be significant we conducted a study in order to evaluate the effects of street washing on the mitigation of resuspension of fine particles. The PM2.5 mass concentration data were examined and integrated with the occurrence of street washing activities. In addition, the effect of the meteorological variability, traffic flow and street washing activities, on ambient PM2.5 levels was evaluated by means of a multivariate regression model. The results revealed that traffic flow is the most important factor that controls PM2.5 hourly concentrations while street washing activities did not influence fine particle mass levels.
    Atmospheric Environment 07/2012; 54:465–469. · 3.11 Impact Factor

Publication Stats

46 Citations
95.45 Total Impact Points

Institutions

  • 2013–2014
    • CREAL Center for Research in Environmental Epidemiology
      Barcino, Catalonia, Spain
    • Athens State University
      Athens, Alabama, United States
  • 2012
    • Spanish National Research Council
      • Institute of Environmental Assessment and Water Research
      Madrid, Madrid, Spain
  • 2010
    • National Center for Scientific Research Demokritos
      Athínai, Attica, Greece